节点文献

反应性官能基硅氧烷的合成与表征

Synthesis and Characterization of Reactive Functional Group Siloxanes

【作者】 柴子斌

【导师】 冯建跃; 陈关喜;

【作者基本信息】 浙江大学 , 应用及分析化学, 2011, 硕士

【摘要】 本文对1,3-双(γ-羟丙基)-1,1,3,3-四甲基二硅氧烷、1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷和1,3-双(γ-氯丙基)-四甲基二硅氧烷三种反应性官能基硅氧烷的制备进行了研究,主要方法和结果如下:1.分别使用羟基保护-硅氢加成法、醇解-硅氢加成法制备了1,3-双(羟丙基)-1,1,3,3-四甲基二硅氧烷。使用原硅酸乙酯为保护剂,在乙醇钠催化作用下与烯丙醇发生酯交换反应保护其中的羟基,在原硅酸乙酯与烯丙醇摩尔比为4:1条件下,主要得到一元酯交换产物三乙氧基烯丙氧基硅烷。在铂催化剂作用下,三乙氧基烯丙氧基硅烷与1,1,3,3-四甲基二硅氧烷发生硅氢加成反应得到1,3-二(γ-三乙氧硅氧基丙基)-1,1,3,3-四甲基二硅氧烷(BSTS)。BSTS在碱性条件下回流水解得到1,3-双(羟丙基)-1,1,3,3-四甲基二硅氧烷,总产率以1,1,3,3-四甲基二硅氧烷计为76.4%,为该化合物的工业制备打下了良好基础。在二甲基一氯硅烷醇解-硅氢加成法制备1,3-双(羟丙基)-1,1,3,3-四甲基二硅氧烷时,直接使用工业上制备甲基氯硅烷时产生的低沸物(二甲基一氯硅烷含量为43.6%)与烯丙醇反应,得到烯丙氧基二甲基氢硅烷。在铂催化剂作用下,烯丙氧基二甲基氢硅烷发生分子内、分子间硅氢加成反应,加成产物在10%的HCl水溶液中回流水解得到目标产物,产率51%。2.在RhCl3/i-PrOH催化作用下,分别使用鼓泡法与恒容法制备了1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷。鼓泡法是将乙炔气通至含有铑催化剂的1,1,3,3-四甲基二硅氧烷中反应。实验确定了该反应的适合温度为35-50℃;在反应体系引入少量水以及直接使用未经纯化乙炔气体的情况下,实验同样顺利进行,这表明少量水以及乙炔气中微量的H2S、PH3、AsH3等杂质不会使催化剂失去活性;该催化剂循环使用四次仍然具有催化活性,产率只下降1/4。采用恒容法可以避免鼓泡法给反应原料1,1,3,3-四甲基二硅氧烷带来的损失,提高了原料的利用率。恒容法制备1,3-二乙烯基-1,1,3,3-四甲基二硅氧烷产率可达98%,为该化合物的工业制备打下了良好基础。3.工业制备甲基氯硅烷时产生的低沸物中有较高含量的二甲基氯硅烷(43.6%),但二甲基氯硅烷难以提纯,本实验在铂催化下直接使用低沸物与氯丙烯反应,得到主要产物γ-氯丙基二甲基氯硅烷,产率以氯丙烯计为45.6%。γ-氯丙基二甲基氯硅烷水解制备得到1,3-双(γ-氯丙基)-1,1,3,3-四甲基二硅氧烷,单步产率95%,为低沸物的再利用提供了一个参考方案。本论文的创新点:(1)将原硅酸乙酯用作保护剂,在乙醇钠催化作用下经酯交换反应保护烯丙醇中的羟基,得到的三乙氧基烯丙氧基硅烷再与1,1,3,3-四甲基二硅氧烷进行硅氢加成反应得到1,3-二(γ-三乙氧基硅氧基丙基)-1,1,3,3-四甲基二硅氧烷(BSTS), BSTS水解得到1,3-双(γ-羟丙基)-1,1,3,3-四甲基二硅氧烷。所用保护剂价格低廉,对实验条件要求低,产率较好。提供了一种保护羟基、制备1,3-双(γ-羟丙基)-1,1,3,3-四甲基二硅氧烷的新方法。(2)纯度较高的二甲基氯硅烷难以获得,本研究直接使用低沸物(二甲基氯硅烷含量43.6%)与烯丙醇、氯丙烯反应,制备1,3-双(γ-羟丙基)-1,1,3,3-四甲基二硅氧烷及γ-氯丙基二甲基氯硅烷,取得了一定的成功,为甲基氯硅烷低沸物的再次利用提供了一种可行的方案。

【Abstract】 The preparation of 1,3-bis(y-hydroxypropyl)-1,1,3,3-tetramethyldisiloxane,1,3-divinyl-1,1,3,3-tetramethyl-disiloxane,1,3-bis(y-chloropropyl)-1,1,3,3-tetramethyldisilo-xane are studied in this paper. The main methods and results are as follows:1. Hydroxyl protection-hydrosilylation and alcoholysis-hydrosilylation methods are used to prepare 1,3-bis(y-hydroxypropyl)-1,1,3,3-tetramethyldisiloxane were studied. By means of hydroxyl protection-hydrosilylation, four parts of tetraethoxysilane reacted with one part of allyl alcohol under the condition of sodium ethoxide, and the main product was triethoxyallyloxysilane(Ⅰ). Triethoxyallyloxysilane was purified by distillation, and then reacted with 1,1,3,3-tetramethyldisiloxane in the presence of Platinum compound, and 1,3-(y-triethoxysiliconoxypropyl)-1,1,3,3-tetramethyl-disiloxane(Ⅱ) was obtained two hours later. 1,3-bis(y-hydroxypropyl)-1,1,3,3-tetramethyldisiloxane(BHTS) was received by homogeneous hydrolysis ofⅡin the mixed solvent of 2% sodium hydroxide solution and ethanol. With the total yield of 76.4% in terms of 1,1,3,3-tetramethyldisiloxane.By means of alcoholysis-hydrosilylation, it refers low-boiling residues(LBR) that derives from the production of methylcholorosilane monomers. LBR used in this paper contains dimethylchlorosilane (43.6%). LBR was reacted with allyl alcohol in the presence of urea, and dimethylallyloxysilane was received. Hydrosilylation was arised intermolecular and intramolecular of dimethylallyloxysilane in the presence of Pt complexes. Target product was obtained by hydrolysis of hydrosilation product in 10% HCl solution, with the yield of 51% in terms of allyl alcohol. Provide references for the preparation of BHTS.2. 1,3-divinyl-1,1,3,3-tetramethyldisiloxane(VMM) was prepared in the presence of RhCl3/i-PrOH, by means of bubble and constant volume. Acetylene was introduced into Rh complexes contained 1,1,3,3-tetramethyldisiloxane by bubble,35-50℃is identified to be the appropriate temperature. Small scale water introduced in the reaction system, and acetylene directly used have little effects to hydrosilation. And the catalyst was still active after the fourth usage, but the yield reduced by 1/4. While by means of constant volume, it can avoid the loss of 1,1,3,3-tetramethyldisiloxane as in the means of bubble, with the yield of 98% in terms of 1,1,3,3-tetramethyldisiloxane.It can raise the usage of rude material,and provide reference method for the industrial preparation of VMM.3. The relative high dimethylchlorosilane contained LBR hydrosilation with allylchloride in the presence of Pt complexes, and y-chloropropyldimethylchlorosilane was obtained, yields 45.6%. 1,3-bis(y-chloropropyl)-1,1,3,3-tetramethyldisiloxane was received by the hydrolysis of y-chloropropyldimethylchlorosilane, single step yields 95%. It provides reference method for the reuse of LBR.The originality in this thesis:(1) Tetraethoxysilane was used as hydroxyl protective agent. The hydroxyl in allyl alcohol was blocked in the presence of sodium ethoxide in order to prepare triethoxyallyloxysilane(Ⅰ).1,3-bis(y-triethoxysiliconoxypropyl)-1,1,3,3-tetramethyl-disiloxane(Ⅱ) was prepared through hydrosilylation of 1,1,3,3-tetramethyldisiloxane with triethoxyallyloxysilane. And 1,3-bis(y-hydroxypropyl)-1,1,3,3-tetramethyldisiloxane was obtained by hydrolysis of II in the mixed solvent of 2% sodium hydroxide solution and ethanol. There are some advantages:tetraethoxysilane is not expensive, the requirement for this reaction is low and yields good. We provide a method to protect hydroxyl and prepare 1,3-bis(y-hydroxypropyl)-1,1,3,3-tetramethyldisiloxane.(2) It’s difficult to purify dimethylchlorosilane from LBR, so we directly used LBR, reacted with allyl alcohol and allyl chloride successfully, 1,3-bis(y-hydroxypropyl)-1,1,3,3-tetramethyldisiloxane and 3-chloropropyldimethyl chlorosilane were prepared. It offers references to the reuse of LBR.

  • 【网络出版投稿人】 浙江大学
  • 【网络出版年期】2011年 07期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络