节点文献

加卸载响应比在Poisson模型下的随机分布

Random Distribution of the Loading and Unloading Response Ratio Under Assumptio ns of Poisson Models

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 庄建仓尹祥础

【Author】 Zhuang Jiancang 1),2) \ Yin Xiangchu 1),3) 1)(Center for Analysis and Prediction, China Seismological Bureau, B eijing\ 100036,China) 2)(Research Center of Exploration Geophysics, China Seismological Bureau, Zhengz hou\ 450002,China) 3)(Lab

【机构】 中国地震局分析预报中心中国地震局地球物理勘探中心中国科学院力学研究所非线性连续介质力学开放实验室

【摘要】 本文在地震的发生时间服从Poison过程,而地震震级服从GutenbergRichter关系的前提下,对不同定义的加卸载响应比Y值的随机分布进行了探讨。结果表明:当在计算窗口的地震发生的期望数目较大(>40)时,Y1~Y5值的分布基本稳定,出现高加卸载响应比的概率极低。然而当计算窗口的地震期望数目过小时,Y2~Y5值则变得不太稳定。也就是说,服从Poison过程的地震序列,在计算窗口的地震期望数目过小时,也可能产生Y值较高的结果。为了使利用加卸载响应比预测地震更加可靠,文中给出了Y1、Y3在Poison模型下的90%、95%和99%的置信区间,这对判别加卸载响应比异常是非常有用的。

【Abstract】 The random distribution of the loading and unloading respo nse ratios (LURR) of different definitions ( Y 1~Y 5 ) has been discussed b y using of the assumption that the earthquakes occur according to Poisson process and their magnitudes ob ey the Gutenberg Richter law. The results show that: the Y 1~Y 5 are qu ite stable or concentrated when the occurrence rate in the calculation time wind ow are relatively large ( >40 ); but when this occurrence rate becomes quite small, Y 2~Y 5 become quite variable or unstable. That is to say, a high value of LURR can be produced not only from seismicity previous to a large eart hquake, but also from a random series of earthquakes which obeys a Poisson proce ss. To check the influence of random factors in the catalogue to the LURR, the r andom distribution of the LURR under Poisson models by simulation has been calcu lated. 90%,95% and 99% confidence bands of Y 1 and Y 3 are given in this pap er, which is helpful to quantify the random influence and to determine LURR prec ursory anomalies.

【基金】 中国国家自然基金委员会重点项目,中国科学技术部与中国地震局“九五”攻关重点项目,中国科学院力学研究所非线性连续介质力学开放实验室资助
  • 【文献出处】 中国地震 ,EARTHQUAKE RESEARCH IN CHINA , 编辑部邮箱 ,1999年02期
  • 【分类号】P315.8
  • 【被引频次】12
  • 【下载频次】53
节点文献中: 

本文链接的文献网络图示:

本文的引文网络