节点文献

基于自适应智能前馈的SCR脱硝系统优化控制

Optimal Control of SCR Denitration System Based on Self-adaptive Intelligent Feedforward

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 秦天牧尤默张瑾哲杨婷婷

【Author】 QIN Tianmu;YOU Mo;ZHANG Jinzhe;YANG Tingting;North China Electric Power Research Institute Co., Ltd;State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources(North China Electric Power University);

【机构】 华北电力科学研究院有限责任公司新能源电力系统国家重点实验室(华北电力大学)

【摘要】 随着环保要求的不断提高,选择性催化还原(selective catalytic reduction,SCR)烟气脱硝系统得到了广泛应用。针对SCR系统具有的大延迟、大惯性特性,将SCR系统机理模型与前馈控制方法相结合,采用滑动窗口法对模型参数进行更新并及时调整反馈系数,提出自适应智能前馈控制方法。利用现场实际运行数据,通过仿真实验对该方法进行验证,实验结果表明,与传统PID控制方法相比,该方法能够实现喷氨量的准确、及时调节,在保证脱硝效率的同时避免了过量喷氨。

【Abstract】 With the incessant improvement of environmental requirements, selective catalytic reduction(SCR) flue gas denitration systems are widely used for power plants. For the large delay and great inertia of SCR system, combining mechanism model of SCR and feedforward control method, employing sliding window method to update model parameters and adjust feedback coefficient in time, self-adaptive intelligent feedforward control method was proposed. Actual operation data was applied to verify the method based on simulation experiment. The results show that comparing with traditional PID control method, this method achieves the accurate and timely control of the amount of ammonia and improves the denitration rate as well as avoids excessive ammonia injection.

【基金】 国家自然科学基金项目(51706066);华北电力科学研究院有限责任公司青年科技项目(KJZ2018094)~~
  • 【文献出处】 中国电机工程学报 ,Proceedings of the CSEE , 编辑部邮箱 ,2019年S1期
  • 【分类号】TM621;X773
  • 【被引频次】11
  • 【下载频次】277
节点文献中: 

本文链接的文献网络图示:

本文的引文网络