节点文献

具有非线性时滞的汽车磁流变悬架系统自适应模糊滑模控制

Adaptive fuzzy sliding mode control for magneto-rheological suspension system considering nonlinearity and time delay

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 董小闵余淼廖昌荣陈伟民

【Author】 DONG Xiao-min1,2,YU Miao2,LIAO Chang-rong2,CHEN Wei-min2(1.State Key Laboratory of Mechanic Transmission,Chongqing University 400044,China;2.College of Opto-Electronic Engineering,Key Lab of Optoelectronic technology and system of Education Ministry,Chongqing University 400044,China)

【机构】 重庆大学机械传动国家重点实验室重庆大学光电学院光电技术及系统教育部重点实验

【摘要】 针对磁流变悬架系统执行器件非线性及其时滞的不确定性,提出采用基于自适应模糊逻辑的滑模控制策略。首先基于磁流变减振器试验测试数据建立了能精确描述执行器非线性动力学行为的控制模型,进而建立了具有不确定时滞的磁流变减振器控制模型;基于建立的1/4半主动悬架动力学模型,设计了自适应模糊滑模控制器;作为比较,基于1/4车辆悬架模型还设计了简单滑模控制器;最后进行了仿真分析和道路试验。试验结果表明,基于自适应模糊滑模控制能消除减振器强非线性和不确定时滞的影响,显著提高车辆的平顺性,其控制效果要优于简单滑模控制。

【Abstract】 Due to the nonlinearity and time delay uncertainty of magneto-rheologcial(MR) suspension,one of the main challenges in the application of MR technology is to derive an appropriate control algorithm.The main purpose of the study is to propose a new adaptive fuzzy sliding mode control(AFSMC) for MR suspension application.An accurate control model of a MR damper was formulated by using the measured experimental data,and the control model considering the time delay uncertainty of MR damper was also developed.A quarter car model equipped with MR damper was constructed and the AFSMC was formulated.For comparison,a simple sliding mode controller based on the quarter car model was also designed.The numerical simulation and the road test were adopted to validate the proposed control algorithm.The results show that the MR suspension system with AFSMC can improve greatly the ride comfort and avoid the effects of nonlinearity and time delay uncertainty of MR damper.Furthermore,the control performance of the proposed control algorithm is superior to that of the simple sliding mode control algorithm.

【基金】 国家自然科学基金(No.60804018,No.50830202);重庆市自然科学基金(CSTC.2008BB6184);中国博士后基金(No.20070420719)
  • 【文献出处】 振动与冲击 ,Journal of Vibration and Shock , 编辑部邮箱 ,2009年11期
  • 【分类号】U463.33
  • 【被引频次】22
  • 【下载频次】497
节点文献中: 

本文链接的文献网络图示:

本文的引文网络