节点文献

基于机载LiDAR和多光谱图像的建筑物震害自动识别方法

Automatic Identification Approach of Building Damages Caused by Earthquake Based on Airborne LiDAR and Multispectral Imagery

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 窦爱霞马宗晋黄文丽王晓青袁小祥

【Author】 DOU Ai-xia1,3,MA Zong-jin1,HUANG Wen-li 2,WANG Xiao-qing3,YUAN Xiao-xiang3(1.Institute of Geology,China Earthquake Administration,Beijing100029;2.Department of Geography Science,University of Maryland,College Park,MD20742,USA;3.Institute of Earthquake Science,China Earthquake Administration,Beijing100036)

【机构】 中国地震局地质研究所中国地震局地震预测研究所美国马里兰大学地理系

【摘要】 地震破坏的建筑物在遥感影像上和空间上表现出的特征各异,致使遥感定量化估计其破坏程度较困难。本文介绍了基于LiDAR和多光谱影像相结合的多源遥感影像进行倒塌建筑物的面向对象识别的方法、分析处理步骤和特征参数选择,并以2010年1月12日海地地震后的太子港局部LiDAR数据和高分辨率卫星影像为例,提取了倒塌和未倒塌建筑物,经与高分影像目视解译结果比较,面向对象分类结果具有较高的分类精度。

【Abstract】 Due to the different characteristics of destroyed buildings in the remote sensing image,it is difficult to quantitatively estimate the damage degree of buildings.In this paper,a seismic damage detection approach,analysis processing step and characteristic parameter selection based on an object-based classification of Light Detection and Ranging(LiDAR)and multispectral remote sensing data was introduced.This approach was then applied to classify the data acquired in some area of Portau-Prince,the capital of Haiti after Haiti earthquake on January 12,2010.Overall classification accuracies and Kappa statistics for the collapsed buildings was 90%and 0.66,respectively,were achieved.Compared with visual interpretation results from images with high resolution,object-oriented classification results higher classification accuracy.

【基金】 地震应急遥感关键技术研究(2009DFA21610)课题资助
  • 【文献出处】 遥感信息 ,Remote Sensing Information , 编辑部邮箱 ,2013年04期
  • 【分类号】TU311.3;P237
  • 【被引频次】13
  • 【下载频次】255
节点文献中: 

本文链接的文献网络图示:

本文的引文网络