节点文献

基于深度学习的草地贪夜蛾自动识别

A CNN-Based Automatic Identification System for Spodoptera frugiperda

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 于业达顾偌铖唐运林韦俊宏潘国庆陈通

【Author】 YU Ye-da;GU Ruo-cheng;TANG Yun-lin;WEI Jun-hong;PAN guo-qing;CHEN Tong;Chongqing Key Laboratory of Nonlinear Circuit and Intelligent Information Processing, Southwest University;State Key Laboratory of Silkworm Genome Biology, Southwest University;Chongqing Key Laboratory of Microsporidia Infection and Control;

【通讯作者】 潘国庆;陈通;

【机构】 西南大学非线性电路与智能信息处理重庆市重点实验室西南大学家蚕基因组生物学国家重点实验室西南大学微孢子虫感染与防控重庆市重点实验室

【摘要】 草地贪夜蛾是一种严重破坏农作物的重大洲际害虫,对我国农业生产造成了极大的威胁.尽管一系列防治措施已经展开,但如何有效辨别草地贪夜蛾仍然是防控工作中的一大难题.为了建立一个有效的识别算法,课题组开展了一系列研究工作,主要贡献在于:①采集了不同地域、不同生长区间的草地贪夜蛾及相似物种图片,建立了一个草地贪夜蛾识别数据库;②利用基于特征融合的深度学习算法,建立了一个三通道T型深度卷积神经网络(T-CNN),在现有数据集上平均识别率达到97%,为草地贪夜蛾的智能识别与防控工作提供了技术支撑.

【Abstract】 Spodoptera frugiperda is a serious crop-destroying pest, which poses a great threat to agricultural production in China. Although a series of preventive measures have been adopted, how to identify the pest effectively is still a major problem in the field. In a study reported in this paper, a series of work was done to establish an effective recognition algorithm. Our main contributions were as follows. First, pictures of S. frugiperda and similar species were collected from different regions, and a recognition database of S. frugiperda was established. Secondly, using a deep-learning algorithm based on feature fusion, we constructed a three-channel T-type deep convolution neural network(T-CNN), whose average recognition rate was over 97% on the existing data sets, thus providing technical support for the smart identification and control of S. frugiperda.

【基金】 中央高校基本业务费团队项目(XDJK2018AA001);中央高校基本业务费面上项目(XDJK2019C010);家蚕基因组生物学国家重点实验室自设课题(2019-03)
  • 【文献出处】 西南大学学报(自然科学版) ,Journal of Southwest University(Natural Science Edition) , 编辑部邮箱 ,2019年09期
  • 【分类号】TP391.41;TP18;S433.4
  • 【网络出版时间】2019-08-23 08:43
  • 【被引频次】5
  • 【下载频次】317
节点文献中: 

本文链接的文献网络图示:

本文的引文网络