节点文献

三维快速高精度地震波正演数值模拟方法及其应用

3D FAST AND HIGH-RESOLUTION SEISMIC-WAVE FORWARD NUMERICAL SIMULATION AND ITS APPLICATION

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈可洋

【Author】 CHEN Keyang(Research Institute of Exploration and Development,PetroChina Daqing Oilfield Company).

【机构】 中国石油大庆油田有限责任公司勘探开发研究院

【摘要】 如何有效提高三维地震波正演数值模拟精度和计算效率一直是勘探地球物理学研究的重要问题。为了克服常规中心有限差分法较难快速提高差分精度的缺陷和一阶双曲型波动方程内存占用多、计算量大、引入变量较多的困难,采用高阶交错网格有限差分法直接求解三维地震波动方程,推导的高阶差分格式计算形式简单,可以推广于求解任意偶数阶时空导数,同时给出其稳定性条件。在人工边界处,对比了镶边法和常规旁轴近似法两种吸收边界条件。从三维似French模型的正演结果看出,采用的高阶交错网格差分算法在快速有效地提高数值模拟精度的同时,大大提高了计算效率,同时结合镶边法吸收边界条件还可有效压制边界反射,提高整个计算域内波场的信噪比。

【Abstract】 How to effectively increase both accuracy and calculation efficiency of 3D seismic-wave forward numerical simulation is an important problem in geophysical prospect.But for conventional central finite-difference method,it is difficult to fast improve difference accuracy;and for one-stage dual-curve wave equation,there are some defects of occupying much memory,large amount of calculation and introducing much variable.In this study,a method of higher-order staggered-grid finite difference is adopted to directly solve a 3D seismic wave equation and there are some advantages:(1) simple calculation form;(2) it may also be applied to solving a random even-order space-time derivative;(3) it can provide with some stable conditions.Moreover,edging method is correlated to conventional paraxial approximation to adsorb in boundary condition.It is shown from the forward result of 3D quasi-French model that:(1) the higher-order staggered-grid finite difference method can not only fast and effectively improve simulation accuracy but also increase calculation efficiency;and(2) combined with edging method,the higher-order staggered-grid finite difference method can effectively impose boundary reflection and improve signal-to-noise ratio of wave field within whole calculation domain.

  • 【文献出处】 天然气勘探与开发 ,Natural Gas Exploration and Development , 编辑部邮箱 ,2011年03期
  • 【分类号】P631.4
  • 【被引频次】6
  • 【下载频次】195
节点文献中: 

本文链接的文献网络图示:

本文的引文网络