节点文献
基于多源遥感数据的植物物种分类与识别:研究进展与展望
Classification and identification of plant species based on multi-source remote sensing data: Research progress and prospect
【摘要】 物种分类与识别是生物多样性监测的基础,明确物种的类别及其分布是解决几乎所有生态学问题的前提。为深入了解基于多源遥感数据的植物物种分类与识别相关研究的发展现状和存在的问题,本文对2000年以来该领域的研究进行了总结分析,发现:当前大多数研究集中在欧洲和北美地区的温带或北方森林以及南非的热带稀树草原;使用最多的遥感数据是机载高光谱数据,而激光雷达作为补充数据,通过单木分割及提供单木的三维垂直结构信息,显著提高了分类精度;支持向量机和随机森林作为应用最广的非参数分类算法,平均分类精度达80%;随着计算机技术及机器学习领域的不断成熟,人工神经网络在物种识别领域得以迅速发展。基于此,本文对目前基于遥感数据的植物物种分类与识别中在分类对象复杂性、多源遥感数据整合、植物物候与纹理特征整合和分类算法技术等方面面临的挑战进行了总结,并建议通过整合多时相监测数据、高光谱和激光雷达数据、短波红外等特定波谱信息、采用深度学习等方法来提高分类精度。
【Abstract】 Species classification and identification is the basis of biodiversity monitoring, and is critical to deal with almost all ecological questions. In this paper, we aim to understand the current status and existing problems in plant species classification and identification using multi-source remote sensing data. We summarized the studies in this field since the year 2000, and found that most of these studies focus on temperate or boreal forests in Europe and North America, or African savanna. Airborne hyperspectral data is the most widely used remote sensing data source, and the LiDAR, as a supplementary data, significantly improves the classification accuracy through the information of single tree segmentation and three-dimensional vertical structure. Support vector machine and random forest are the most widely used non-parametric classification algorithms with an average classification accuracy of 80%. With the development of computer technology and machine learning, artificial neural network has developed rapidly in species identification. Based on the literature-based analysis, we propose that the current research in this field is still facing some challenges, including the complexity of classification objects, the effective integration of multi-source remote sensing data, the integration of plant phenology and texture characteristics, and the improvement in plant classification algorithm. The accuracy of plant classification and identification could be greatly improved by using the high-frequency data collection over time, the integration of hyperspectral and LiDAR data, the use of specific spectral information such as short-wave infrared imagery, and the development of novel deep learning techniques.
【Key words】 species classification; species identification; remote sensing monitoring; biodiversity; supervised classification;
- 【文献出处】 生物多样性 ,Biodiversity Science , 编辑部邮箱 ,2019年07期
- 【分类号】Q949;TP79
- 【被引频次】18
- 【下载频次】1318