节点文献

磁性纳米粒子介导的细胞生物学效应

Magnetic nanoparticles-based cellular biological effects

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 吴交交樊星高芮成昱

【Author】 WU Jiaojiao;FAN Xing;GAO Rui;CHENG Yu;School of Medicine, Tongji University;

【通讯作者】 成昱;

【机构】 同济大学医学院

【摘要】 磁性纳米粒子(magnetic nanoparticles, MNPs)由于其独特磁响应性,可将外加磁场的能量转化为机械能和热能。磁性纳米粒子介导的物理信号依赖于MNPs本身的磁学性能及磁场的参数,可定量输出作用于不同类型的细胞,调控细胞命运。MNPs本身Fe2+引发芬顿反应可上调化学信号(reactive oxygen species, ROS),用于肿瘤治疗;在超低频磁场(<1 Hz)下产生的机械力可诱导干细胞分化和巨噬细胞极化等过程,用于再生医学领域;在低频磁场(1~100 Hz)下产生的机械力可通过直接物理破坏或间接触发生物信号通路,引起肿瘤细胞死亡;在高频磁场(100 kHz~1 MHz)下产生的热可破坏肿瘤细胞,在神经元信号转导领域也取得一定的突破。研究MNPs介导的化学、物理、生物信号引起的细胞生物学效应对MNPs的设计和磁场的选择具有重要的指导意义。本文就MNPs在不同类型磁场下介导的细胞生物学效应做一概述。

【Abstract】 Magnetic nanoparticles(MNPs) can convert magnetic field energy into mechanical or thermal energy due to their unique magnetic responses. MNPs-mediated physical signals depend on its magnetic properties and magnetic field parameters, which can be quantitatively exported to different types of cells and manipulate the fate of cells. Intrinsic Fe2+ of MNPs triggered Fenton reaction, can upregulate the chemical signal ROS(reactive oxygen species), which is used for tumor treatment. Under ultra-low frequency magnetic field(<1 Hz), the mechanical force generated can induce stem cell differentiation, macrophage polarization and other processes, which are used in the field of regenerative medicine. Under low-frequency magnetic field(1-100 Hz), the mechanical force can directly destroy cells or indirectly trigger the biological signaling pathway, resulting in tumor cells death. Under high-frequency magnetic fields(100 kHz-1 MHz), heat can destruct tumor cells, and some breakthroughs have been made in the field of neuron signal transduction. It is important to investigate the cellular biological effects triggered by chemical, physical and biological signals, owing to prior guidance for design of MNPs and selection of magnetic field. This paper gives an overview of the cell biological effects mediated by MNPs under different types of magnetic fields.

【基金】 国家自然科学基金项目(31870997,81571803);上海市教育委员会科研创新计划项目重大项目(201701070007 E00038);上海市科委国际合作项目(16410724300)
  • 【文献出处】 生命的化学 ,Chemistry of Life , 编辑部邮箱 ,2019年05期
  • 【分类号】Q274
  • 【被引频次】3
  • 【下载频次】304
节点文献中: 

本文链接的文献网络图示:

本文的引文网络