节点文献

苏里格大型致密砂岩气田开发井型井网技术

Well type and pattern optimization technology for large scale tight sand gas,Sulige gas field

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 何东博贾爱林冀光位云生唐海发

【Author】 He Dongbo,Jia Ailin,Ji Guang,Wei Yunsheng,Tang Haifa (PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China)

【机构】 中国石油勘探开发研究院

【摘要】 苏里格气田是中国致密砂岩气田的典型代表,井型井网技术是其提高单井控制储量和采收率、实现气田规模有效开发的关键技术。针对苏里格气田大面积、低丰度、强非均质性的特征,形成了大型复合砂体分级构型描述与优化布井技术、井型井网优化技术、水平井优化设计技术和不同类型井产能评价技术,为苏里格气田产能建设Ⅰ+Ⅰ类井比例达到75%~80%、预期采收率提高到35%以上以及水平井的规模化应用发挥了重要的技术支撑作用。为进一步提高苏里格气田单井产量和采收率,应继续开展低效井侧钻、多分支水平井、多井底定向井等不同井型,以及水平井井网、多井型组合井网的探索和开发试验。

【Abstract】 Sulige gas field is a typical tight sand gas field in China.Well type and pattern optimization is the key technology to improve single well estimated reserves and recovery factor and to achieve effective field development.In view of the large area,low abundance and high heterogeneity of Sulige gas field,a series of techniques have been developed including hierarchical description for the reservoir architecture of large composite sand bodies and well spacing optimization,well pattern optimization,design and optimization for horizontal trajectory and deliverability evaluation for different types of gas wells.These technologies provide most important technical supports for the increases of class I and Ⅱ wells proportion to 75%-80% with recovery factor enhanced by more than 35% and for the industrial application of horizontal drilling.To further improve individual well production and recovery factor,attempts and pilot tests in various well types including side tracking of deficient wells,multilateral horizontal wells,and directional wells,and horizontal well pattern and combined well pattern of various well types should be carried out throughout the development.

【基金】 国家科技重大专项“大型油气田及煤层气开发”(2011ZX05015)
  • 【文献出处】 石油勘探与开发 ,Petroleum Exploration and Development , 编辑部邮箱 ,2013年01期
  • 【分类号】TE324
  • 【网络出版时间】2013-01-16 09:08
  • 【被引频次】47
  • 【下载频次】1769
节点文献中: 

本文链接的文献网络图示:

本文的引文网络