节点文献

基于LSTM网络预测的水轮机机组运行状态检测

Hydraulic turbine operation status detection based on LSTM network prediction

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈畅李晓磊崔维玉

【Author】 CHEN Chang;LI Xiaolei;CUI Weiyu;School of Control Science and Engineering, Shandong University;

【通讯作者】 李晓磊;

【机构】 山东大学控制科学与工程学院

【摘要】 利用长短期记忆(long short-term memory, LSTM)网络对水轮机机组的运行状态进行预测。对水轮机机组的流式监测数据进行标准化处理,并利用滑动窗口技术将数据转换为LSTM网络训练所需的训练数据集与测试数据集;给出LSTM预测模型结构,并通过调节网络层数、隐层神经元数目等参数对模型进行优化,建立水轮机机组的时间序列数据预测模型。经试验分析验证,与其它模型相比,基于多测点的多元长短期记忆网络预测模型具备更高的预测精度,并基于改进的雷达图分析法计算健康偏离度,成功地检测出某水电厂5号水轮机机组5月末的数据出现异常,验证了模型的有效性。

【Abstract】 Long short-term memory(LSTM) networks was adapted to make accurate prediction of the unit?s operation status. The streaming monitoring data of the turbine unit was standardized, and the sliding window technology was used to convert the data into the training data set and test data set for LSTM network training. The LSTM prediction model structure was given, and the structure of LSTM prediction model was fine-tuned, such as the number of network layers and the number of hidden layer neurons. The time series data prediction model of the hydro turbine unit was established. The experimental analysis proved that the multi-measurement-based LSTM network prediction model had higher prediction accuracy than other models, which calculated the health deviation based on the improved radar image analysis method and successfully detected the abnormality of the No. 5 hydraulic turbine unit of a hydropower plant at the end of May, and verified the validity of the model.

  • 【文献出处】 山东大学学报(工学版) ,Journal of Shandong University(Engineering Science) , 编辑部邮箱 ,2019年03期
  • 【分类号】TV734.1;TV737
  • 【网络出版时间】2019-03-18 11:52
  • 【被引频次】13
  • 【下载频次】492
节点文献中: 

本文链接的文献网络图示:

本文的引文网络