节点文献

天然微藻水热炭理化特性及热解动力学研究

Physicochemical characteristics and pyrolysis kinetics of hydrothermal carbon from natural Scenedesmus

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘慧慧曲磊陈应泉张文楠杨海平王贤华陈汉平

【Author】 Liu Huihui;Qu Lei;Chen Yingquan;Zhang Wennan;Yang Haiping;Wang Xianhua;Chen Hanping;State Key Laboratory of Coal Combustion,Huazhong University of Science and Technology;Department of Chemical Engineering,Mid Sweden University;

【通讯作者】 王贤华;

【机构】 华中科技大学煤燃烧国家重点实验室Department of Chemical Engineering,Mid Sweden University

【摘要】 为探索天然微藻资源化的利用途径,该文以天然栅藻为原料,采用傅立叶转换红外线光谱分析, X射线衍射分析,X射线荧光光谱分析,环境扫描电子显微镜与热重分析仪对水热炭进行测试分析。研究结果表明,随着水热温度的升高,水热炭产率从47.29%(180℃)降低至43.01%(240%);水热炭的O/C摩尔比从1.45减小至0.28,碳化程度加强,水热炭具有应用于固体燃料的潜力。鉴于水热炭含有大量灰分,其热值为8.43~9.67 MJ/kg,因此脱灰预处理是必要的过程。经过水热碳化处理,天然栅藻的比表面积从4.36 m~2/g增加到35.26 m~2/g。热解动力学结果表明随着水热温度的提高,水热炭的热稳定性增强。研究结果对天然微藻的资源化利用提供了一定的理论参考。

【Abstract】 In order to explore the utilization of natural microalgae, the natural Scenedesmus was selected to carry out hydrothermal carbonization experiments, and the characterization of its hydrochars was determined using Fourier transform infrared spectroscopy, X-ray diffraction analysis, X-ray fluorescence spectroscopy, environmental scanning electron microscopy and thermogravimetric analyzer. The results showed that the ash content of natural Scenedesmus was 44.66%, and the lipid and protein content of natural Scenedesmus were 1.4% and 15.1%, respectively. The natural microalgae ash components were mostly water-insoluble components. The main components included(Mg0.064 Ca0.936 CO3), SiO2, NaCl, Al2 O3, CaSO4, Mg3 S2 O8(OH)2. After hydrothermal carbonization treatment, NaCl was dissolved in water, and the water-insoluble components were enriched in hydrochars. Compared with the natural Scenedesmus, the ash content of hydrochars increased, in the range from 57.41% to 71.47%. It was worth noting that the natural Scenedesmus and its derived hydrochars had no fixed carbon. With the increase of hydrothermal temperature, the hydrothermal carbon yield decreased from 47.29%(180℃) to 43.01%(240℃). This phenomenon was on account of the organic components in the natural Scenedesmus underwent hydrolysis, dehydration, decarboxylation, aromatization, condensation and polymerization. The carbon remaining ratio was the largest, the oxygen was the smallest, and the remaining ratios of carbon, hydrogen and oxygen decreased as the hydrothermal temperature increased. For HC-240, the removal rates of H and O were 69.88% and 93.88%, respectively, and the C remaining ration rate was 33.97%. The O/C molar ratio of hydrochars decreased from 1.45 to 0.28. Dehydration and decarboxylation were the main pathways in hydrothermal carbonization of the natural Scenedesmus, and the demethylation pathway was negligible. Oxygen was removed in the form of H2 O and CO2. The degree of carbonization was enhanced and hydrochars had the potential to be applied to solid fuels. Since hydrochars contained a large amount of ash, its calorific value was in the range of 8.43-9.67 MJ/kg. Hence, the pretreatment of deashing was a necessary process. The hydrothermal carbonization treatment effectively improved the pore structure of hydrochars, and the absorption-desorption capacity of hydrochars was obviously enhanced. Compared with natural Scenedesmus(4.36 m~2/g), the specific surface area of hydrochars was in the range of 28.7-35.26 m~2/g. The natural Scenedesmus had a dense block-like without pores or pathways. However, the morphologies of hydrochars changed significantly. The fragmentation and porosity of hydrochars increased, which attributed to the release of volatile matter during hydrothermal carbonization process and chemical bond decomposition of feedstock. The thermogravimetric analysis experiments were carried out to reveal the pyrolysis characteristics of hydrochars. It was found that the weight loss peak at 300 ℃ gradually disappeared with the increased of hydrothermal temperature. This was owing to the degree of natural Scenedesmus increased and the volatile matter content decreased. When the hydrothermal temperature was higher than 220 ℃, the maximum weight loss rate peak moved to the high temperature zone. The pyrolysis kinetics results showed that the thermal stability of hydrochars increased with the increase of hydrothermal temperature. The hydrochars were more hydrophobic than that of the natural Scenedesmus. The research results provide a theoretical reference for the resource utilization of natural microalgae.

【基金】 国家自然科学基金:生物质热化学转化基础(51622604)
  • 【文献出处】 农业工程学报 ,Transactions of the Chinese Society of Agricultural Engineering , 编辑部邮箱 ,2019年14期
  • 【分类号】S216.2
  • 【被引频次】6
  • 【下载频次】271
节点文献中: 

本文链接的文献网络图示:

本文的引文网络