节点文献

农林废弃物高效循环利用模式与效益分析

High-efficiency recycling mode of agroforest wastes and its benefit analysis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 丛宏斌赵立欣孟海波姚宗路贾吉秀袁艳文霍丽丽吴雨浓

【Author】 Cong Hongbin;Zhao Lixin;Meng Haibo;Yao Zonglu;Jia Jixiu;Yuan Yanwen;Huo Lili;Wu Yunong;Center of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering;Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture;

【通讯作者】 赵立欣;

【机构】 农业农村部规划设计研究院农村能源与环保研究所农业部农业废弃物能源化利用重点实验室

【摘要】 中低慢速热解技术将生物质在绝氧或低氧环境中加热分解,生产生物炭、热解油和不可冷凝气体产物,是农林废弃物高效利用的重要途径。该文基于生物质热解炭气联产技术,构建了农林废弃物能源化资源化高效循环利用应用模式,秸秆炭用于还田,木质炭成型后用于供暖,热解气用于居民炊事和热水,热解油回用燃烧为系统加热,木醋液稀释后用作杀虫剂。前南峪热解联产示范工程年运行5 500~6 000 h的条件下,可处理各类农林废弃物2 500 t,生产生物炭700 t(其中秸秆炭约150 t、木质炭550 t),生产热解气20余万m~3,木质型炭和热解气可满足全村386户居民冬季取暖和全年炊事热水用能需求,秸秆炭与人畜粪便复混,全部用于还田。原料收购采用生物炭兑换方式,本村居民5 t农林废弃物原料兑换1t炭基肥或木质型炭,热解气以0.9元/m~3的价格出售给本村农民,工程运行可持续、可复制,具有良好的社会环境效益。项目可实现农林废弃物的高值利用,改善农村用能结构,促进农业可持续发展。

【Abstract】 China has abundant agroforestry residue resources. According to the statistics, the amount of crop straw and forestry residue reached 900 million and 300 million tons, respectively. At present, the use of agroforestry residues mainly includes fertilizer, raw material, energy, and feed. Realizing the efficient recycling of agroforestry waste resources is an important way to increase the added value of agroforestry, promote the green development of agroforestry, improve the rural energy structure, and enhance the rural human settlement environment. Biomass pyrolysis poly-generation based on slow pyrolysis technology of biomass, through pyrolysis gas purification and co-production technology integration, produces a wide range of products in clean gas, biochar, pyrolysis oil, vinegar, electricity and hot water. Biomass pyrolysis gas is clean and renewable, and it is an important energy source for the replacement of bulk coal in rural areas. Biochar can improve soil, and can also be processed to produce high quality energy products. Biomass pyrolysis poly-generation is one of the important ways to comprehensively utilize agricultural and forestry wastes, which can further enhance the comprehensive benefits of the development and utilization of agricultural and forestry waste resources, and have a good prospect for popularization and application. Based on the biomass pyrolysis carbon gas co-production technology, this paper constructs an energy-efficient resource efficient recycling application model for agriculture and forestry waste. Straw biochar is used for returning to the field, and wood charcoal for heating after molding. The pyrolysis gas is used for residents’ cooking and hot water. The pyrolysis oil is burned for system heating, and the wood vinegar is diluted for insecticide. Under the conditions of 5 500 to 6 000 hours of operation, the Qiannanyu Pyrolysis Poly-generation Demonstration Project processes 2 500 t of various agricultural and forestry wastes annually, produces 700 t of biochar(including 150 t of straw biochar and 550 t of wood biochar), and produces more than 200 000 m~3 of pyrolysis gas. The woody charcoal and pyrolysis gas can meet the requirements of 386 farmers in the village for winter heating and hot water for the whole year. The straw biochar is mixed with human and animal manure, all of which are used for returning to the field. The raw material purchase adopts the method of woody charcoal exchange, 5 t agricultural and forestry wastes are exchanged for 1 t carbon base fertilizer or woody charcoal for heating, and the pyrolysis gas is sold to the villagers at the price of 0.9 yuan/m~3. The project is sustainable, reproducible and has significant social and environmental benefits, and it realizes a high value utilization of agroforestry waste, improves the energy structure of rural areas, and promotes the sustainable development of agriculture.

【关键词】 废弃物热解循环利用工程适用性
【Key words】 wastespyrolysisrecyclingprojectapplicability
【基金】 现代农业产业技术体系专项资金(CARS-02)
  • 【文献出处】 农业工程学报 ,Transactions of the Chinese Society of Agricultural Engineering , 编辑部邮箱 ,2019年10期
  • 【分类号】X71
  • 【被引频次】11
  • 【下载频次】520
节点文献中: 

本文链接的文献网络图示:

本文的引文网络