节点文献

黄土动力变形研究进展与可能突破方向

Progress and possible breakthroughs in research into the dynamic deformation of loess

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 田文通王兰民孙军杰徐舜华刘琨孙昱

【Author】 TIAN Wen-tong;WANG Lan-min;SUN Jun-jie;XU Shun-hua;LIU Kun;SUN Yu;Lanzhou Institute of Seismology,Chinese Earthquake Administration;Key Laboratory of Loess Earthquake Engineering,Chinese Earthquake Administration;Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province;

【机构】 中国地震局兰州地震研究所中国地震局黄土地震工程重点实验室甘肃省岩土防灾工程技术研究中心

【摘要】 通过分析黄土动力变形研究的进展状况,概括已有研究的主要切入点和存在的问题,结合黄土动力变形研究对厘清其物理过程与力学机制的需求,提出未来取得突破的可能方向.分析结果显示:已经开展的相关研究工作,基本以动三轴试验作为关键基础数据来源,将分析土体物性参量、动荷载类型和微观结构特征等因素的影响作为切入点,在各类影响因素的相互制约方面未能给予足够考虑;少量基于物理力学机制的工作,虽对关键影响参量以及其间关联作了较好分析,但在理论化、定量化方面仍嫌薄弱;未来的研究中,定量刻画动荷载作用于土体的加载效应、固相动力响应与其宏观结构强度的定量关系、水气两相复合势能动力累积规律和场地边界条件对土体初始应力状态的影响等,应是值得关注的获取实质性突破的可能方向.

【Abstract】 The research progress in dynamic deformation of loess was first analyzed and the train of thought and the deficiency in the existing results were summarized. Then the requirements for dynamic mechanisms were discussed to comprehend the physical process and mechanical mechanism of loess deformation under dynamic loading. Finally we proposed several breakthrough points for research into the dynamic deformation of loess in the future. The analyzed results showed that for the existing arts, the dynamic triaxial test in laboratory is the main approach to investigating the loess deformation under seismic loadings. Based on the laboratory data, these studies attract more attention to the dynamic deformation features influenced by three aspects,i.e. the physical properties of loess, types of dynamic loadings and microstructural characteristics of the soil.Almost all researches have failed to consider the interaction between different factors and this has led to the main constraints on the rationality and applicability of relative results. A few studies, fortunately, have applied the physical-mechanical mechanism and obtained better results from the analysis of critical influence parameters and the correlation between them. But these results are still preparatory and further efforts are needed in the theorization and quantification of the essential laws concerning dynamic loess deformation. According to above analysis, we believe that for future research on dynamic loess deformation, the theoretical description of the loading effect caused by the ground motion on loess, the quantitative relation between the dynamic response of solid-phase and the macro structure strength of loess, the dynamic development laws of composite potential energy of air and water phases, and the influence of boundary conditions in field on initial stress state of loess,etc, should be the noteworthy breakthrough spoints to consider.

【基金】 中国地震局地震预测研究所基本科研业务费专项基金项目(2013IESLZ01);国家自然科学基金项目(51209186,50978239)
  • 【文献出处】 兰州大学学报(自然科学版) ,Journal of Lanzhou University(Natural Sciences) , 编辑部邮箱 ,2014年05期
  • 【分类号】TU444;TU435
  • 【被引频次】6
  • 【下载频次】210
节点文献中: 

本文链接的文献网络图示:

本文的引文网络