节点文献
基于PSO优化的RBF神经网络在地震测井联合反演中的应用
Application of RBF Neural Network in Joint Inversion of Seismic Logging Based on PSO Optimization
【摘要】 目前,钻井地质特征参数的获得主要依赖于地震、测井资料,对待钻井而言,则只有地震信息。而若缺乏详细的地质信息,利用地震信息很难精确地推算各种地质参数。可首先利用已钻井地震信息和测井信息的映射关系,结合待钻井的地震信息,来预测待钻井的测井信息。采用PSO优化的RBF神经网络算法进行地震测井反演,并将该算法应用于准噶尔盆地永字号井。该算法与最小二乘RBF神经网络算法和梯度下降RBF神经网络算法相比,在平均绝对误差、平均相对误差、最大误差、相关系数、数据方差以及收敛速度等方面都是最优的。
【Abstract】 To obtain geologic characteristic parameters mainly depended on seismic and logging data, while for well drilling, only seismic information was available. It was difficult to predict various geologic data without detail geologic information. In combination of seismic information with the data of well drilling, the mapping relation between the seismic information and logging information could be firstly used to predict logging information in drilling, PSO optimized RBF neural network algorithm was used for seismic inversion and the algorithm was used in the Wells Yong of Junggar Basin. Comparing with least square RBF and gradient descent RBF neural network methods, it is optimized in areas of absolute error, average relative error, maximum error, correlation coefficient, variance and convergence rate.
【Key words】 seismic data; logging information; particle swarm optimization (PSO); radial basis function (RBF); joint inversion of seismic and logging;
- 【文献出处】 石油天然气学报 ,Journal of Oil and Gas Technology , 编辑部邮箱 ,2008年01期
- 【分类号】P631.815
- 【被引频次】2
- 【下载频次】245