节点文献

Subduction-zone peridotites and their records of crust-mantle interaction

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 Jianping ZHENGQing XIONGYi ZHAOWenbo LI

【Author】 Jianping ZHENG;Qing XIONG;Yi ZHAO;Wenbo LI;School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences;

【通讯作者】 Jianping ZHENG;

【机构】 School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences

【摘要】 Subduction is the core process of plate tectonics. The mantle wedge in subduction-zone systems represents a key tectonic unit, playing a significant role in material cycling and energy exchange between Earth’s layers. This study summarizes research progresses in terms of subduction-related peridotite massifs, including supra-subduction zone(SSZ) ophiolites and mantle-wedge-type(MWT) orogenic peridotites. We also provide the relevant key scientific questions that need be solved in the future. The mantle sections of SSZ ophiolites and MWT orogenic peridotites represent the mantle fragments from oceanic and continental lithosphere in subduction zones, respectively. They are essential targets to study the crust-mantle interaction in subduction zones. The nature of this interaction is the complex chemical exchanges between the subducting slab and the mantle wedge under the major control of physical processes. The SSZ ophiolites can record melt/fluid-rock interaction, metamorphism,deformation, concentration of metallogenic elements and material exchange between crust and mantle, during the stages from the generation of oceanic lithosphere at spreading centers to the initiation, development, maturation and ending of oceanic subduction at continental margins. The MWT orogenic peridotites reveal the history of strong metamorphism and deformation during subduction, the multiple melt/fluid metasomatism(including silicatic melts, carbonatitic melts and silicate-bearing C-HO fluids/supercritical fluids), and the complex cycling of crust-mantle materials, during the subduction/collision and exhumation of continental plates. In order to further reveal the crust-mantle interaction using subduction-zone peridotites, it is necessary to utilize high-spatial-resolution and high-precision techniques to constrain the complex chemical metasomatism, metamorphism,deformation at micro scales, and to reveal their connections with spatial-temporal evolution in macro-scale tectonics.

【Abstract】 Subduction is the core process of plate tectonics. The mantle wedge in subduction-zone systems represents a key tectonic unit, playing a significant role in material cycling and energy exchange between Earth’s layers. This study summarizes research progresses in terms of subduction-related peridotite massifs, including supra-subduction zone(SSZ) ophiolites and mantle-wedge-type(MWT) orogenic peridotites. We also provide the relevant key scientific questions that need be solved in the future. The mantle sections of SSZ ophiolites and MWT orogenic peridotites represent the mantle fragments from oceanic and continental lithosphere in subduction zones, respectively. They are essential targets to study the crust-mantle interaction in subduction zones. The nature of this interaction is the complex chemical exchanges between the subducting slab and the mantle wedge under the major control of physical processes. The SSZ ophiolites can record melt/fluid-rock interaction, metamorphism,deformation, concentration of metallogenic elements and material exchange between crust and mantle, during the stages from the generation of oceanic lithosphere at spreading centers to the initiation, development, maturation and ending of oceanic subduction at continental margins. The MWT orogenic peridotites reveal the history of strong metamorphism and deformation during subduction, the multiple melt/fluid metasomatism(including silicatic melts, carbonatitic melts and silicate-bearing C-HO fluids/supercritical fluids), and the complex cycling of crust-mantle materials, during the subduction/collision and exhumation of continental plates. In order to further reveal the crust-mantle interaction using subduction-zone peridotites, it is necessary to utilize high-spatial-resolution and high-precision techniques to constrain the complex chemical metasomatism, metamorphism,deformation at micro scales, and to reveal their connections with spatial-temporal evolution in macro-scale tectonics.

【基金】 supported by the National Natural Science Foundation of China (Grant Nos. 41520104003 & 41873032);the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Grant No. CUG180604)
  • 【文献出处】 Science China(Earth Sciences) ,中国科学:地球科学(英文版) , 编辑部邮箱 ,2019年07期
  • 【分类号】P588.125;P542
  • 【网络出版时间】2019-04-28 09:23
  • 【被引频次】8
  • 【下载频次】36
节点文献中: 

本文链接的文献网络图示:

本文的引文网络