节点文献

Genesis of the Bianjiadayuan Pb-Zn polymetallic deposit, Inner Mongolia, China:Constraints from in-situ sulfur isotope and trace element geochemistry of pyrite

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 Kai-Rui SongLi TangShou-Ting ZhangM.SantoshChristopher J.SpencerYu ZhaoHao-Xing LiLiang WangAn-Li ZhangYin-Qiang Sun

【Author】 Kai-Rui Song;Li Tang;Shou-Ting Zhang;M.Santosh;Christopher J.Spencer;Yu Zhao;Hao-Xing Li;Liang Wang;An-Li Zhang;Yin-Qiang Sun;School of the Earth Sciences and Resources, China University of Geosciences (Beijing);Centre for Tectonics, Exploration and Research, University of Adelaide;School of Earth and Planetary Sciences, The Institute of Geoscience Research, Curtin University;Lituo Mining Company;243 Team, China Nuclear Geology;

【通讯作者】 Li Tang;

【机构】 School of the Earth Sciences and Resources, China University of Geosciences (Beijing)Centre for Tectonics, Exploration and Research, University of AdelaideSchool of Earth and Planetary Sciences, The Institute of Geoscience Research, Curtin UniversityLituo Mining Company243 Team, China Nuclear Geology

【摘要】 The Southern Great Xing’an Range(S(GXR)which forms part of the eastern segment of the Central Asian Orogenic Belt(CAOB)is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo(Cu),skarn Fe(Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn± Cu± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including(i)the early porphyry mineralization stage,(ii)main porphyry mineralization stage,(iii)transition mineralization stage,(iv)vein-type mineralization stage and(v)late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites:Pyl is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium-to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Pyl to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni(0.03-10.79,average 2.13)and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ34ScDT values of Pyl(0.42‰-1.61‰,average1.16‰),Py2(-1.23‰to 0.82‰,average 0.35‰),Py3(—0.36‰to 2.47‰average 0.97‰).Py4(2.51‰--3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit(-5‰to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian(Jurassic-Cretaceous)magmatic-hydrothermal events.Variations of δ34 S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type Pb-Zn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.

【Abstract】 The Southern Great Xing’an Range(S(GXR)which forms part of the eastern segment of the Central Asian Orogenic Belt(CAOB)is known as one of the most important Cu-Mo-Pb-Zn-Ag-Au metallogenic belts in China,hosting a number of porphyry Mo(Cu),skarn Fe(Sn),epithermal Au-Ag,and hydrothermal veintype Ag-Pb-Zn ore deposits.Here we investigate the Bianjiadayuan hydrothermal vein-type Ag-Pb-Zn ore deposit in the southern part of the SGXR.Porphyry Sn± Cu± Mo mineralization is also developed to the west of the Ag-Pb-Zn veins in the ore field.We identify a five-stage mineralization process based on field and petrologic studies including(i)the early porphyry mineralization stage,(ii)main porphyry mineralization stage,(iii)transition mineralization stage,(iv)vein-type mineralization stage and(v)late mineralization stage.Pyrite is the predominant sulfide mineral in all stages except in the late mineralization stage,and we identify corresponding four types of pyrites:Pyl is medium-grained subhedral to euhedral occurring in the early barren quartz vein;Py2 is medium-to fine-grained euhedral pyrite mainly coexisting with molybdenite,chalcopyrite,minor sphalerite and galena;Py3 is fine-grained,subhedral to irregular pyrite and displays cataclastic textures with micro-fractures;Py4 occurs as euhedral microcrystals and forms irregularly shaped aggregate with sphalerite and galena.LA-ICP-MS trace element analyses of pyrite show that Cu,Pb,Zn,Ag,Sn,Cd and Sb are partitioned into pyrite as structurally bound metals or mineral micro/nano-inclusions,whereas Co,Ni,As and Se enter the lattice via isomorphism in all types of pyrite.The Cu,Zn,Ag,Cd concentrations gradually increase from Pyl to Py4,which we correlate with cooling and mixing of ore-forming fluid with meteoric water.Py2 contains the highest contents of Co,Ni,Se,Te and Bi,suggesting high temperature conditions for the porphyry mineralization stage.Ratios of Co/Ni(0.03-10.79,average 2.13)and sulphur isotope composition of sulfide indicate typical hydrothermal origin for pyrites.The δ34ScDT values of Pyl(0.42‰-1.61‰,average1.16‰),Py2(-1.23‰to 0.82‰,average 0.35‰),Py3(—0.36‰to 2.47‰average 0.97‰).Py4(2.51‰--3.72‰,average 3.06‰),and other sulfides are consistent with those of typical porphyry deposit(-5‰to 5‰),indicating that the Pb-Zn polymetallic mineralization in the Bianjiadayuan deposit is genetically linked to the Yanshanian(Jurassic-Cretaceous)magmatic-hydrothermal events.Variations of δ34 S values are ascribed to the changes in physical and chemical conditions during the evolution and migration of the ore-forming fluid.We propose that the high Sn content of pyrite in the Bianjiadayuan hydrothermal vein-type Pb-Zn polymetallic deposit can be used as a possible pathfinder to prospect for Sn mineralization in the surrounding area or deeper level of the ore field in this region.

【基金】 financially supported by National Key Research and Development Program of China (2016YFC0600504);Fundamental Research Funds for the Central Universities (2652017218)
  • 【文献出处】 Geoscience Frontiers ,地学前缘(英文版) , 编辑部邮箱 ,2019年05期
  • 【分类号】P618.2
  • 【被引频次】5
  • 【下载频次】28
节点文献中: 

本文链接的文献网络图示:

本文的引文网络