节点文献

水平井牵引机器人关键技术研究

Key Technologies for Horizontal Well Traction Robot

【作者】 白相林

【导师】 刘文剑;

【作者基本信息】 哈尔滨工业大学 , 机械工程, 2010, 博士

【摘要】 产液剖面测试技术是水平井开发的重要配套技术,同垂直井相比,需要解决将测试仪器输送到水平目的井段的难题,水平井牵引机器人作为管道机器人的一种,在水平井测试过程中表现出的优势已被广泛认可。本课题来源于与大庆油田公司的合作课题“水平井牵引机器人研制”,并于2007年得到“863”国家高技术研究发展计划项目(2007AA06Z231)的支持。其目标是研制一种能将测井仪器输送到水平井目标测试段的管道机器人。本文围绕牵引机器人机械系统中的关键技术,采用优化与仿真方法对其进行研究。首先给出牵引机器人系统的组成,制定机械系统的总体方案,进行井下执行单元的设计及自动定心机构和电磁离合器的方案设计。井下执行单元是牵引机器人的核心,由动作机构和驱动机构组成,分别用来控制驱动臂张合与爬行轮转动。利用模块化设计思想,确定驱动单元的结构形式,建立牵引力调节机构的力学模型,并对其结构参数进行优化,对影响牵引力的因素进行深入研究。提出采用齿形轮结构来提高牵引力的方法,对轮齿与管壁间的压入情况进行计算,得到轮齿的压入角及齿形角的取值范围。牵引机器人系统工作的安全性也是非常重要的,对于采用轮式驱动的牵引机器人,驱动臂可靠张开与闭合是机器人正常工作的必要条件,为此设计一种新型螺旋槽式电磁离合器。集成牙嵌式离合器与电磁离合器的特点,利用螺管力与弹簧力组合作用,实现啮合与脱开。根据电磁离合器的结构特点及功能要求,建立力学模型。以线圈高度最小为优化目标,完成电磁参数和结构参数优化;并在ADAMS平台上对其工作状态进行仿真分析,验证设计的正确性,利用优化后的结构参数完成电磁离合器结构设计。接下来,对牵引机器人另一关键机构—自动定心机构进行优化研究,采用偏置式4对臂8轮结构形式,利用压缩弹簧蓄能。根据其不同工作状态下的受力特点,建立力学模型和仿真模型。利用ADAMS提供的DOE工具,通过研究优化目标与设计变量之间的敏感度,找出相关度最大的作为设计变量,完成结构参数优化。利用优化后的模型进行管内越障分析,发现原设计方案的不足之处,并提出新的结构方案。牵引机器人关键结构确定后,可以对牵引机器人整体进行仿真研究。先对爬行轮结构形式与机器人卡堵问题进行分析,得出无差速驱动是导致机器人无法越障的最直接原因。分析非越障轮与越障轮的速度匹配与驱动臂长度及爬行轮陷入接缝的深度之间的关系,对无差速驱动下驱动单元跨越不同宽度管接缝和管内台阶障碍时的运动状态进行仿真研究,进一步证明无差速驱动是造成机器人卡堵的原因。为了使机器人能顺利越障,必须使非越障轮具备打滑的条件。然后对牵引机器人整体在直管障碍和弯管情况下的通过性进行仿真研究,获得牵引机器人越障时各部件的工作特点,对牵引机器人通过油井圆弧段的工作状态进行分析,给出牵引机器人在油井中过弯的许可条件。最后进行试验验证,通过电磁离合器的功能试验,验证所设计的电磁离合器可以满足要求;通过地面管道爬行试验,全面检验牵引机器人井下执行单元工作情况,并在试验中对牵引力进行测量;通过现场试验,验证所研制的牵引机器人达到预期功能要求,为后续的性能提高,提供理论依据和技术参考。

【Abstract】 Production section testing technique is an important kit technique of horizontal well development. comparing with perpendicular well, it needs to solve the hard nut of transporting logger to horizontal object well segment. The horizontal well traction robot is one of pipeline robot, expressing the advantage in the test process of horizontal well has already accredited broadly. This topic comes from "863" national high technique research development program items(2007AA06Z231). Its object is to develop a kind of pipeline robot that transports the logger to the horizontal well object testing segment. This text surrounds the traction robot mechanical key structure and make use of optimum and simulation way to carry on a research.First, give the composition of traction robot system, confirm the general layout of machanical system, completed the function and principle design of the downhole driving unit, made sure the structure layout of auto-centralizer and electromagnetic clutch in the meantime. The downhole execution unit is the hardcore of traction robot, include actuating mechanism and driving mechanism, use to control the driving arm open and close, driving wheel running respectively. According to modulization idear, designed the general structure of driving unit, built the mechanics model and traction force regulates mechanism, and carried on an optimization to the structure parameters, carried on a thorough research to the factor that effects a traction force. Put forward adoption tooth wheel to increase a traction force, and according to the cutting force of disc milling cutter, carried on a calculation to the corresponding cutting depth of the tooth into the tube wall, passed to actually measure to acquire positive pressure and the relation between pressing depth and pressing width, give the value range of wheel tooth angle.The operate safety of traction robot system is also count for much, for the traction robot with wheel drive, driving arm’s dependablely opening and close is the essential condition of robot regular running. Therefore designed a new kind of electromagnetic cluth that integrated the characteristics of tooth type clutch and electromagnetic clutch, make use of the interaction of solenoid force and spring force to engages and disengages. Created the mechanics model of electromagnetic clutch, with winding height minimum for optimum object, completed the optimization of electromagnetism parameter and structure parameter; Combine at ADAMS platform to carried on a simulation analysis of its running states, verified the validity of design, completed the structure design of electromagnetic clutch with the optimized structure parameter.Then carried on an optimization research to another key mechanism auto-centralizer of traction robot. Adopt bias structure with 4 pari of arms and 8 wheels, made use of a compression spring save energy. built a mechanics model, made use of DOE that ADAMS provides, passed the sensitivity of research optimization object and design variable, find out a related degree maximum of design variable, completed the optimization of structure parameters. Carry on over obstacles analysis with the optimized model, discovered shortage of original design, and give solution.After the two greatest key structures of traction robot confirmed, carry on a simulation to the whole traction robot .First carried on analysis to structure form and the question that robot block up while crawls along a tube gap, find the most direct reason, which cause robot can not over obstacles is use the non differential drive. Analyzed the relation between the speed of driving arm length of wheel not overing obstacle and wheel overing obstacle and the depth of a wheel sink into the gap. Carried on a simulation research of the running status of driving unit over different width gap and obstruction inside the tube with non differential drive, and proved further the non differential drive is the reason that makes the robot blocked. In order to make robot over obstacles smoothly, the wheel not overing obstacle must have a slippery condition. Then carried on a simulation research of the whole traction robot pass capability under the ascending tube obstruction and the bend tube, explicit the characteristics of each unit while traction robot over obstacles, analyzed the operate condition that the traction robot passes an arc well segment, verified the overbending capability of traction robot in the oil tube.Finally carried on an trial research, through the function test of electromagnetic clutch, verified the electromagnetic clutch can satisfy driving unit’s request; Crawl along tube on the ground, inspected the operate status of traction robot driving unit completely, at the same time measured the traction force in the test; Through the locale test, proved the developed traction robot system satisfied the request, and provided theory foundation and technique for the follow-up improve performance.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络