节点文献

基于VSR-VSI的永磁同步电机驱动控制系统研究

Research on Pmsm Drive Control System Based on VSR-VSI

【作者】 张平化

【导师】 李铁才;

【作者基本信息】 哈尔滨工业大学 , 电机与电器, 2010, 博士

【摘要】 在现代社会对能源和环保要求越来越高的背景下,开展对高效、环保的电机驱动控制系统的研究是十分迫切和必要的。电压源型整流器(Voltage Source Rectifier,VSR)具有输入电流正弦、功率因数高、能量可双向流动的优点,近年来一直是研究关注的热点。将VSR与电压源型逆变器(Voltage Source Inverter,VSI)整合为VSR-VSI应用于电机驱动控制系统中,能够实现电机驱动系统的双向可逆运行和能量回馈控制,但该技术目前仍处于研究阶段。为此本文选取基于VSR-VSI的永磁同步电机驱动控制系统作为研究对象,围绕VSR-VSI整合后出现的母线电压可控,能量可双向流动的新特点,对VSR有源前端的控制策略,永磁同步电机的能量回馈控制策略,以及VSR-VSI的整合实现方法及协调控制技术等方面进行深入研究,具有重要的理论意义和工程实用价值。论文首先建立VSR-VSI永磁同步电机系统在dq坐标系中的数学模型,推导出d、q轴等效开关函数的取值范围,给出系统可逆运行的定义,为后续的研究奠定理论基础。通过分析VSR-VSI系统单位功率因数可逆运行时母线电压、电网电势、输入电流、负载电流之间的制约关系及电流平衡点的稳定性,指出系统存在双向不对称的运行特点,为后续控制策略的改进提供理论支撑。为了解决VSR-VSI变换器应用于永磁同步电机驱动控制系统中,传统单自由度PI电压控制器不能兼顾母线电压设定点镇定和扰动抑制的问题,提出一种二自由度的I-PD电压控制策略。详细给出控制器参数的整定方法,并进行系统性能分析。仿真和实验结果表明,该控制策略能够有效地减小母线电压超调,抑制浪涌电流冲击,减小负载扰动和电网电势波动的影响。针对传统串联控制结构的母线电压响应速度慢的问题,在输入—输出反馈线性化控制方法的基础上,提出一种由电压误差和电流误差共同作用输入变量的直接电压控制方法,简化了控制律表达式,减少了计算变量,并能够保证系统的渐进稳定性。利用电压误差方程对系统在不同负载扰动下的动、静态性能进行定量分析,及系统参数存在误差时的影响。仿真和实验结果表明该方法能够提高VSR在大负载扰动范围内的母线电压响应速度。采用VSR-VSI驱动拓扑后可实现能量的双向流动,为了更好地控制永磁同步电机制动时的回馈能量,通过磁场定向控制下的制动过程分析,针对永磁同步电机三种典型负载建立恒转矩制动方式下的回馈能量模型。在此基础上,应用瞬时功率理论,提出一种基于饱和电流限制的能量回馈优化控制策略。仿真和实验表明,该策略可有效减小制动回馈时的功率冲击,提高能量回馈效率。为了解决VSR与永磁同步电机之间的协调控制问题,提出一种基于瞬时功率计算的系统整合实现方法。采用单片三核数字信号控制器(Tricore DSC),实现VSR-VSI永磁同步电机驱动系统的控制算法整合。完成系统硬件、软件的整合设计,并进行实验验证。实验结果表明,系统能够实现电机四象限、能量双向可逆运行,稳态运行平稳,动态抗扰动性能较好,能够有效降低系统不对称运行的影响。

【Abstract】 Within the background of increasing demand for energy and environmental protection of modern society, it is very necessary and urgent to develop high efficiency motor drive control system. Voltage source rectifier (VSR) has constantly been focused recent years, for its advantages of sinusoidal input current, high power factor and bidirectional power flow. Howerver, it still has a long way to apply the voltage source rectifier to voltage source inverter (VSR-VSI) into AC motor drive and control system to attain the four-quadrant operation and energy regeneration. Therefore, the VSR-VSI based permanent magnet synchronous motor (PMSM) drive control system is selected in this dissertation to carrie out a deep research on control strategy of VSR active front end (AFE) and PMSM regeneration, integrated implementation method, coordinative control technology, focused on the new features of controllable DC-bus voltage and energy reversible flowing. It has both important theoretical significance and practical value.First, the mathematical model of VSR-VSI PMSM system is established in the dq coordinate, and the value range of the equivalent switching functions is derived. And then, the definition of reversible operation is given, which lends theoretical foundation for the ensuing research. After that, by analyzing the mutual constraints of DC bus voltage, grid voltage, input current and load current and the stability of current equilibrium point in the unity power factor operating mode, it is pointed out that the whole system has a character of bidirectional asymmetry operation, which supports improvement of the ensuing control strategy theoretically.In order to solve the traditional PI control method of VSR AFE used in motor drive failing to meet the bus voltage set point stabilization and disturbance restrain simultaneously, a novel I-PD voltage control strategy is proposed basing on the two degree of freedom (TDOF) control theory. The design method of controller parameters is discussed in details and system performance analysis is given.Simulation and experimental results show that this strategy can effectively depress the bus voltage overshoot as well as current surge, and reduce the system influences caused by load disturbance and grid voltage fluctuations. In order to speed up the dynamic response of the DC bus voltage under traditional cascade control structure, a new direct voltage control method is proposed, combining voltage error and current error to control input variables following the differential geometry linearization theory. This method can not only effectively simplify the control law expression, reduce calculated variables, but also guarantee the global stability of the entire system. By making use of voltage error equation, quantitative analysis of the steady and dynamic performance under different load disturbance is given, and the impact when the system parameter existing error is analyzed. Simulation and experimental results show that this method can increase the system dynamic response speed even under large load disturbance.To improve the control of regeneration energy of PMSM in the VSR-VSI drive, braking procedure of PMSM under flux-oriented-control is analyzed, and the regeneration model is established according to three typical loads of PMSM under constant braking torque mode. Further more, an optimal control strategy of energy regeneration is proposed with saturation current constrain by applied the instantaneous power theory. Simulation and experimental results show that the proposed strategy can effectively reduce regenerative braking power shock, and improve the efficiency of regenerative energy.Finally, to solve the problem of coordinate controlling of VSR and PMSM, an instantaneous power calculation based system integrated solution is proposed. And an integrated VSR-VSI PMSM drive control system is implemented basing upon control platform which comprises of single Tricore digital signal controller (DSC), and the integrated implementations of hardware and software are achieved. The experimental results demonstrate that the proposed energy optimization control strategy can achieve four-quadrant operation, energy bidirectional flow, smoothly steady state operation with high dynamic disturbance rejection performance, and can reduce the influence due to asymmetrical operation effectively.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络