节点文献

大气紫外成像光谱仪地面测试与定标技术研究

Study on Ground Testing and Calibration of Atmospheric Ultraviolet Imaging Spectrograph

【作者】 李聪

【导师】 徐寄遥; 王咏梅;

【作者基本信息】 中国科学院研究生院(空间科学与应用研究中心) , 空间物理学, 2010, 博士

【摘要】 中国科学院空间科学与应用研究中心已研制出大气紫外成像光谱仪原理样机。该样机采用推扫式成像光谱技术,使用二维CCD探测器给出光谱信息和垂直飞行方向的空间信息。本论文主要针对该样机,系统地研究了仪器的地面测试与定标技术,为其定量化应用奠定了基础,并为后续紫外成像光谱仪的研制和技术改进积累了经验。论文第一章介绍了大气紫外遥感的应用,描述了国内外大气紫外光谱仪的发展,分析了大气紫外光谱仪定标的意义、内容和方法,举例介绍了国内外典型的星载大气紫外光谱仪的地面定标技术。论文第二章简要介绍了大气紫外成像光谱仪系统,包括探测目标和原理、工作方式和主要性能指标以及系统组成,引出了论文接下来三章要研究的地面定标内容。论文第三、四、五章深入研究了大气紫外成像光谱仪的地面测试与定标技术,包括光谱定标、辐亮度定标、视场定标、线性和杂散光测试。主要研究内容如下:1.光谱定标技术研究部分。首先介绍了典型光谱仪光谱定标的方法,研究了大气紫外成像光谱仪光谱定标理论。其次对大气紫外成像光谱仪的波长定标技术进行了研究。选取Pt-Ne空心阴极放电灯作为定标光源,建立了定标装置,对仪器进行了波长定标。通过对仪器的输出结果进行预处理、寻峰、峰位—波长配对、亚像元级峰位确定以及回归分析,得到了波长定标结果,并分析了定标不确定度。然后结合大气紫外成像光谱仪的特点,采用放电灯法估计了仪器的光谱响应函数。用波长定标用的Pt-Ne空心阴极灯作为光源,估计出了仪器的光谱响应函数,进而得到了仪器的光谱分辨率。最后采用了两种方法对光谱定标结果进行了检验。2.辐亮度定标技术研究部分。首先研究了大气紫外成像光谱仪辐亮度定标理论,包括定标原理以及两种定标方法——漫反射板法和积分球法。然后研究了两种方法下大气紫外成像光谱仪的辐亮度定标技术。选取1000 W光谱辐照度标准灯作为定标光源,分别建立了两种方法下的定标装置,对仪器的输出结果进行了处理,得到了辐亮度定标结果,比对了两种方法下的定标结果,并对两种方法的定标不确定度进行了分析和比较。3.视场定标、线性和杂散光测试技术研究部分。首先研究了大气紫外成像光谱仪的视场定标技术,包括总视场定标和空间响应函数测量。研究了总视场定标的原理和方法,建立了定标装置,对仪器进行了总视场定标。测量了仪器的空间响应函数,进而得到了空间分辨率。其次研究了大气紫外成像光谱仪的线性测试技术,分别采用两种方法——偏振片法和积分时间法对仪器进行了线性测试。最后研究了大气紫外成像光谱仪的杂散光测试技术。论文第六章研究了紫外波段材料的漫反射特性定标和测试技术。首先介绍了描述材料表面反射特性的一些基本概念,研究了双向反射分布函数的测量原理和方法。其次对风云三号紫外臭氧总量探测仪漫反射板进行了定标,并分析了定标误差。然后利用漫反射板光谱角反射特性测量系统,研究了材料的光谱双向反射分布函数绝对测量技术。最后测量了与紫外臭氧总量探测仪漫反射板采用相同工艺、同批制成的两块漫反射板的半球反射比,并监测了其半球反射比的长期变化。论文第七章总结了全文的研究工作,并对下一步可以开展的研究工作进行了设想。

【Abstract】 The prototype of the Atmospheric Ultraviolet Imaging Spectrograph (AUVIS) is developed by CSSAR CAS, which employs hyperspectral imaging in a push-broom mode. The AUVIS instrument has been equipped with a two-dimensional CCD detector to record both the spectrum and the swath perpendicular to the flight direction. The aim of this dissertation is to study the ground testing and calibration of the AUVIS instrument, attempting to lay the foundation for its quantitative measurement and accumulate experience for development of the follow-up ultraviolet imaging spectrograph.In chapter 1, the main application domains of atmospheric ultraviolet remote sensing are introduced, the developments and the calibration methods of atmospheric ultraviolet spectrometer are described, and examples of groud calibration at home and abroad are given. In chapter 2, the AUVIS instrument is introduced, including the detection targets, the principle, the working modes, the main performance, the design of the systems components, and the calibration contents to be studied in the next three chapters.In chapter 3, 4&5, the ground testing and calibration of the AUVIS instrument are studied, including spectral calibration, radiance calibration, viewing calibration, linearity test and stray light test. The main studies are as follows:In chapter 3, spectral calibration technology of the AUVIS instrument is studied. Firstly, the calibration theory is discussed. Secondly, the wavelength calibration technology is studied. A Pt-Ne gas discharge lamp is chosen as the source, and the calibration setup is established. After the experimental data preprocessing, peak finding, peak location-wavelength pairing, subpixel location and regression analysis, a function of―column number-wavelength‖is established. The uncertainty of the wavelength calibration is analyzed. Secondly, considering the characteristics of the AUVIS, the spectral response function is estimated using the gas discharge lamp method. The Pt-Ne lamp used in the wavelength calibration is also used, and the spectral response function and spectral resolution are estimated. Thirdly, the results of the spectral calibration are verified by two methods.In chapter 4, radiance calibration technology of the AUVIS instrument is studied. Firstly, the calibration theory is discussed, including the principle and two methods-the diffuser method and the integrating sphere method. Secondly, the AUVIS radiance calibration is performed by the two methods. A 1000 W FEL lamp is chosen as the source, and two calibration setups are established. After the experimental data processing, the radiance calibration results are calculated and compared. The uncertainty of the radiance calibration of the two methods are analyzed and compared.In chapter 5, viewing calibration, linearity testing and stray light testing technology are studied. Firstly, the viewing calibration is studied, including the FOV calibration and the spatial response function measurement. The calibration principle and method of the FOV calibration are discussed, the calibration setup is established, and the FOV of the AUVIS is calibrated. The spatial response function and the spatial resolution are measured. Secondly, the linearity of the AUVIS is tested by two methods-the polarizer method and the exposure time method. Thirdly, the stray light of the AUVIS is measured.In chapter 6, diffuser calibration and testing in the UV are studied. Firstly, the descriptions of the diffuse properties are introduced, and the BRDF measurement principle and method are discussed. Secondly, the three diffusers of FY-3 TOU are calibrated, and the error is analyzed. Thirdly, the absolute BRDF testing technology is studied employing a Spectro-Gonio-Reflectometer. Finally, the hemispherical reflectance of the two diffusers is measured, which have the same technology and the same class with the three diffusers of FY-3 TOU, and their long-term changes are monitored.In chapter 7, all of the studies in the dissertation are summarized, and the next-step research idea is briefly described.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络