节点文献

过渡金属超常氧化态配合物化学发光新体系的研究与应用

Investigation and Application of Novel Chemiluminescence Systems about Transition Metals in Highest Oxidation State Complex

【作者】 杨春艳

【导师】 章竹君;

【作者基本信息】 陕西师范大学 , 分析化学, 2010, 博士

【摘要】 自从20世纪初人们肯定了过渡金属超常氧化态的存在后,国内外的学者开展了大量的关于过渡金属超常氧化态的研究工作。目前人们已经成功地制备和分离出其纯品,不同超常氧化态过渡金属稳定存在形式是不同的。例如在已知的超常氧化态过渡金属中,Ni (Ⅳ), Ag (Ⅲ),Cu(Ⅲ)都是借助于适当的多齿配体而稳定存在,如二过碘酸合镍,二过碲酸合银,二过碘酸合银,银的多肽配合物,二过碘酸合铜,二过碲酸合铜等,而Fe(Ⅵ)则通常以高铁酸盐(如FeO42-)的形式存在。过渡金属超常氧化态配离子具有特殊的结构,在适当的条件下有较高的氧化能力,目前人们对过渡金属超常氧化态的研究主要集中在以下两方面:(1)过渡金属超常氧化态配离子与小分子之间的氧化还原反应动力学和机理研究;(2)过渡金属超常氧化态配离子引发高分子领域中的自由基聚合反应的研究。但到目前为止,过渡金属超常氧化态配合物在发光分析中的应用却很少。本论文在第一章中对过渡金属超常氧化态配合物的研究及其在分析化学中的应用作了评述;本论文的研究报告分为三部分:一、过渡金属超常氧化态配离子催化鲁米诺-过氧化氢化学发光新体系的研究及其在化学发光生物传感器中的应用研究发现过渡金属超常氧化态配离子(二羟基二(过碘酸根)合铜(Ⅲ)配离子(DPC)、二羟基二(过碘酸根)合银(Ⅲ)配离子(DPA)和二羟基二(过碘酸根)合镍(Ⅳ)配离子(DPN))对鲁米诺-过氧化氢化学发光反应均具有很强的催化性能,且远超过通常的金属离子催化剂、过渡金属配合物催化剂、金属蛋白类催化剂和纳米粒子催化剂。例如在低浓度的鲁米诺(10-7 mol L-1)条件下,常用的催化剂(Co2+, Cu2+, Ni2+, Mn2+, Fe3+, Cr3+, K3Fe(CN)6)对鲁米诺-过氧化氢化学发光反应都几乎无催化能力,而过渡金属超常氧化态配离子在相同条件下仍然表现出很强的催化化学发光。由此建立了一种的用于测定过氧化氢的化学发光新体系。克服了文献中报道过的各种鲁米诺-过氧化氢化学发光体系测定过氧化氢所存在的干扰问题,提高了方法的选择性,同时减少的试剂的消耗。过氧化氢又是一种基础化学传感器,与产生过氧化氢的酶识别反应相结合,可以构建多种生物传感器。在此设计中酶反应器的制备是一个关键技术,文中设计了一种新颖的将海藻酸钙纤维与纳米介孔二氧化硅相结合作为酶载体的酶反应器。该反应器将氨基化纳米介孔二氧化硅对酶的吸附作用和聚合物对酶的笼蔽效应相结合改善了酶从载体上的泄露问题,同时由于纳米介孔二氧化硅的特殊表面结构,催化增强作用和生物相容性使得被固定在载体上的酶具有较强催化活性并能长时间的保持其稳定性。本文以葡萄糖氧化酶为模板研究了该酶反应器在流通式化学发光生物传感器中的性能。将该酶反应器与鲁米诺-二羟基二(过碘酸根)合镍(Ⅳ)配离子-过氧化氢化学发光体系相结合建立了一种高灵敏度的流通式葡萄糖化学发光生物传感器,检出限比已报道的化学发光传感器低两个数量级。该流通式化学发光生物传感器具有制备简单,响应速度快,寿命长,灵敏度高和操作简单的特点。进而又制备了将葡萄糖氧化酶和β-半乳糖苷酶同时固定在氨基化纳米介孔二氧化硅-海藻酸钙纤维上的双酶反应器。由此构建的化学发光乳糖生物传感器,化学发光强度与乳糖浓度在8.0×10-8-4.0×10-6 g mL-1范围内呈良好的线性关系,方法的检出限是2.7×10-8 g mL-1。该流通式化学发光生物传感器已经成功地应用于测定牛奶中的乳糖含量。二、过渡金属超常氧化态配合物作为氧化剂在鲁米诺化学发光体系中的应用研究在鲁米诺-过氧化氢-过渡金属超常氧化态配合物化学发光体系中,当过氧化氢缺乏时,过渡金属超常氧化态配合物则主要呈现出高的氧化性,可以氧化鲁米诺产生化学发光,某些化合物可以增敏该化学发光。通过对该体系反应前后的紫外光谱、荧光光谱、化学发光光谱及反应动力学的分析,结合文献中的一些研究成果,本论文认为,这一化学发光体系涉及一系列自由基反应过程。以鲁米诺-二羟基二(过碘酸根)合镍(Ⅳ)配离子(DPN)-异烟肼化学发光体系为例,在反应过程中起氧化作用的活化物种是二羟基一过碘酸合镍配离子(MPN)。它经过两步单电子转移氧化异烟肼逐级生成异烟肼自由基、二氮烯自由基和苯甲酸自由基,同时MPN氧化鲁米诺生成鲁米诺自由基。由异烟肼产生的一系列自由基与鲁米诺自由基反应生成α-羟基过氧化物,α-羟基过氧化物分解生成激发态的氨基邻苯二甲酸根离子,当其由激发态回到基态时,将能量以光子的形式释放出来,产生化学发光。在此研究基础上建立了测定异烟肼、硫酸阿米卡星和硫酸双肼屈嗪的化学发光新方法。(1)四价镍配合物作为氧化剂的鲁米诺化学发光新体系的研究研究了二羟基二过碘酸合镍配离子在碱性条件下氧化鲁米诺产生化学发光的行为。以异烟肼为模板,通过化学发光光谱和紫外吸收光谱讨论了该发光现象的可能反应机理。该化学发光体系具有高的灵敏度和选择性并且已经成功的应用于血清中异烟肼的测定。(2)鲁米诺-二羟基二过碘酸合银配离子化学发光新体系测定硫酸阿米卡星实验发现在碱性介质中三价银的配合物能够氧化鲁米诺产生化学发光,而硫酸阿米卡星可以极大地增敏该化学发光。结合流动注射技术建立了测定硫酸阿米卡星的化学发光新方法。在优化条件下,相对化学发光强度与硫酸阿米卡星浓度在5.1×10-8-5.1×10-6 mol L-1范围内呈良好的线性关系,方法的检出限是1.9×10-8 mol L-1(3σ),对浓度为5.1×10-7 mol L-1的硫酸阿米卡星溶液平行测定7次,相对标准偏差是2.8%。将该方法用于测定血清中的硫酸阿米卡星,结果令人满意。(3)鲁米诺-二羟基二过碘酸合铜配离子流动注射化学发光法测定硫酸双肼屈嗪基于在碱性介质中硫酸双肼屈嗪能极大地增敏鲁米诺-二羟基二过碘酸合铜配离子的化学发光,建立了一种新的流动注射化学发光测定硫酸双肼屈嗪的方法,并且探讨了该发光行为的可能反应机理。在优化条件下,相对化学发光强度与硫酸双肼屈嗪浓度在7.0×10-9-8.6×10-7g mL-1范围内呈良好的线性关系,方法的检出限是2.1×10-9g mL-1(3σ)。对浓度为5.2×10-8 gmL-1的硫酸双肼屈嗪溶液平行测定7次,相对标准偏差是3.1%。该方法具有操作简单,响应迅速,灵敏度高的特点。并且用浓度很低的鲁米诺就可以得到令人满意的分析结果,减少了试剂的消耗量,提高了方法的选择性。该方法已经成功地应用于血清中硫酸双肼屈嗪的测定。三、过渡金属超常氧化态配合物直接氧化化学发光反应研究研究发现过渡金属超常氧化态配离子(二羟基二(过碘酸根)合铜(Ⅲ)配离子(DPC)、二羟基二(过碘酸根)合银(Ⅲ)配离子(DPA)和二羟基二(过碘酸根)合镍(Ⅳ)配离子(DPN)具有超常的氧化能力使它们能直接氧化某些物质而产生化学发光。基于此建立了过渡金属超常氧化态配合物直接氧化化学发光测定尿酸、肾上腺素、林可霉素的新方法。通过研究体系的动力学曲线、紫外光谱、荧光光谱、化学发光光谱,讨论了直接氧化化学发光新体系可能的反应机理。在过渡金属超常氧化态配合物直接氧化化学发光体系中,尿酸、林可霉素和过渡金属超常氧化态配离子之间(DPA,DPN)发生的是一步双电子转移的氧化还原反应,首先形成激发态的DPN,DPA与分析物的配合物中间体,氧化还原反应通过活化中间体的内界双电子转移来完成,当激发态配合物中间体回到基态时,能量以光的形式释放,产生化学发光。而肾上腺素-DPN体系的反应历程是DPN氧化肾上腺素生成激发态的3,4-二羟基苯乙酮,当其回到基态时发出波长为450 nm的光。(1)二羟基二过碘酸合银配离子直接氧化化学发光法测定尿酸基于二羟基二过碘酸合银配离子在碱性介质中能够直接氧化尿酸而产生化学发光,建立了一种新的灵敏的测定尿酸的流动注射化学发光新方法。在优化条件下,化学发光强度与尿酸浓度在4.0×10-7-2.0×10-4 mol L-1范围内呈良好的线性关系,方法的检出限是1.2×10-7 mol L-1(3σ)。对浓度为5.0×10-5 mol L-1的尿酸溶液平行测定7次,相对标准偏差是2.1%。该方法与其他已报道的化学发光法相比较具有更高的选择性,已经成功的应用于测定血清中的尿酸含量。(2)四价镍直接氧化化学发光法测定林可霉素基于在酸性条件下二羟基二过碘酸合镍能够直接氧化林可霉素产生化学发光,建立了测定林可霉素的流动注射化学发光新方法。在优化条件下,相对化学发光强度与林可霉素浓度在8.0×10-9-1.0×10-6g mL-1范围内呈良好的线性关系,方法的检出限是2.5×10-9 gmL-1(3σ),对浓度为1.0×10-7 g mL-1的林可霉素溶液平行测定7次,相对标准偏差为4.0%。将该方法用于测定注射液、血清和尿样中的林可霉素含量,结果令人满意。(3)四价镍直接氧化化学发光新方法测定肾上腺素报道了一种在碱性介质中二羟基二过碘酸合镍直接氧化肾上腺素产生化学发光测定肾上腺素的新方法。在最优的条件下,相对化学光强度与肾上腺素浓度在1.0×10-7-1.0×10-5g mL-1范围内呈良好的线性关系,方法的检出限是4.0×10-8 g mL-1(3σ)。对浓度为2.0×10-6 g mL-1的肾上腺素溶液平行测定11次,相对标准偏差为3.7%。该方法已经成功的用于测定注射液中肾上腺素的含量。

【Abstract】 The application of transition metals in highest oxidation state has been extensively studied since their existence was known in the beginning of the last century. Transition metals in highest oxidation state should be stabilized by chelating with suitable polydentate ligands. The known transition metals in highest oxidation state including [Ag(HIO6)2]5-, [Ag(H2TeO6)2]5-,[Cu(HIO6)2]5-, [Cu(H2Te06)2]5-,[Ni(HIO6)2(OH)2]6-, [Ni(HTeO4)6]2- and FeO42-. Transition metals in highest oxidation state complex have been considerably used in the analysis of several organic compounds and initiator of graft copolymerization due to their particular structure which focus on kinetics and mechanism of oxidation, the existence form of reaction active center and electron transfer reaction and so on.The application of Transition metals in highest oxidation state complex in analysis is summarized in Chapter 1. The research work of the dissertation is made up of three sections of novel chemiluminescence systems about transition metals in highest oxidation state complex.(I) The study of transition metals in highest oxidation state complex used as catalyter in luminol-H2O2 CL system and its application in chemiluminescence flow-through biosensorTransition metals in highest oxidation state complex (DPC, DPN, DPA) possess more excellent catalysis than previously reported (such as Co2+, Cu2+, Ni2+, Mn2+, Fe3+, Cr3+, KIO4, K3Fe(CN)6 and so on) in luminol-hydrogen peroxide CL system with low luminol concentration. It is important that the interference by these catalyzers in the H2O2 determination is absent with lower concentration of luminol and H2O2. The selectivity chemiluminescence reaction of luminol-H2O2-transition metals in highest oxidation state complex has been proposed for the determination H2O2 in rain water and artificial water.A novel enzyme reactor was prepared by calcium alginate fiber and amino modified nanosized mesoporous silica (CAF-AMNMS) as support. Combination the adsorption of enzyme on AMNMS with the cage effect of the polymer greatly increases catalytic activity and stability of immobilized enzyme. It was showed that the lifetime, stability and catalytic activity of enzyme reactor greatly improved by incorporating AMS into CAF to efficiently encapsulate enzyme. Glucose oxidase (GOD) was chosen as a model enzyme to explore the possibility of CAF-AMNMS as a matrix for enzyme immobilization in the design of a chemiluminescence (CL) flow-through biosensor. The detection limit of the flow-through biosensor combined with a novel luminol-dihydroxydiperiodatonickelate (DPN) CL system was lower than other reported CL biosensor. The proposed biosensor exhibits short response time, easy operation, long lifetime, high catalytic activity, high sensitivity and simple assembly. Then a novel enzyme reactor with co-immobilization ofβ-galactosidase and glucose in calcium alginate fiber and amino modified nanosized mesoporous silica (CAF-AMNMS) was prepared. The enzyme reactor was applied to prepare a chemiluminescence (CL) flow-through biosensor combined with a novel luminal-dihydroxydiperiodatonickelate (DPN) CL system we reported. The concentration range of linear response is 8×10-8-4×10-6 g mL-1 with the detection limit of 2.7×10-8 g mL-1 (3σ). It had been successfully applied to determine lactose in milk.(Ⅱ) Transition metals in highest oxidation state complex used as oxidant in luminol CL systemTransition metals in highest oxidation state complex (DPC, DPN, DPA) are good oxidants which can react with luminol to emit CL in alkaline medium. The CL intensity could be greatly enhanced by some compounds. In this system, using low concentration luminol can get excellent experimental result with higher selectivity than other luminol system. The possible mechanism of this system was first proposed based on the kinetic characteristic of the reaction, CL spectrum and UV spectra. Luminol-DPN-isoniazid CL system as the example, the oxidation reaction of MPN (main reactive form of the DPN) and isoizid proceeds via formation of three free radicals (isoniazid radical, diazene radical and isonicotinoyl) by two reversible one-electron transfer processes, at the same time, MPN oxidates luminol to form luminol radical. Luminol radical reacts with three radical from isoniazid to produce proxy anion. proxy anion decomposes to electronically excited 3-aminophthalate with loss nitrogen and then contributes CL emission by returning to ground state. Isoniazid, amikacin sulfate and dihydralazine sulfate have been determined based on the CL reaction.(1) New luminol chemiluminescence reaction using tetravalent nickel-periodate complex as a oxidant and its applications Here we report a new chemiluminescence (CL) reaction between luminol and tetravalent nickel-periodate complex (dihydroxydiperiodatonickelate, DPN) in alkaline medium. The CL intensity could be greatly enhanced by some compounds. The application of luminol-DPN system was studied using isoniazid as a model. In this system, luminol with very low concentration can get excellent experimental result with higher selectivity than other luminol system. It had been successfully applied to determine isoniazid in serum.(2) New luminol chemiluminescence reaction using dihydroxydiperiodatoargentate as oxidant for the determination of amikacin sulfateA new chemiluminescence (CL) reaction between luminol and dihydroxydiperiodatoargentate (K2 [Ag (H2IO6) (OH)2], DPA) was observed in alkaline medium. The CL intensity could be greatly enhanced by amikacin sulfate (AKS). So a new CL method for the determination of amikacin sulfate was built by combining with flow injection technology. The concentration range of linear response is 5.1×10-8-5.1×10-6mol L-1 with the detection limit of 1.9×10-8 mol L-1 (3σ). The proposed method had good reproducibility with the relative standard deviation 2.8%(n=7) for 5.1×10-7 mol L-1 of amikacin sulfate. It have been successfully applied to determine amikacin sulfate in serum.(3) Flow-injection chemiluminescence determination of dihydralazine sulfate in serum using luminol and dihydroxydiperiodatocuprate (Ⅲ) systemA novel flow-injection chemiluminescence (CL) method for the determination of dihydralazine sulfate (DHZS) is described. The method is based on the reaction of luminol and dihydroxydiperiodatocuprate (K2 [Cu (H2IO6) (OH)2], DPC) in alkaline medium to emit CL, which is greatly enhanced by DHZS. The optimum condition for the CL reaction was in detail studied using flow injection system. The experiments indicated that under optimum condition, the CL intensity was linearly related to the concentration of DHZS in the range of 7.0×10-9-8.6×10-7g mL-1 with a detection limit (3σ) of 2.1×10-9 g mL-1. The proposed method had good reproducibility with the relative standard deviation 3.1%(n=7) for 5.2×10-8 g mL-1 of DHZS. This method has the advantages of simple operation, fast response and high sensitivity. The special advantage of the system is that very low concentration of luminol can react with DPC catalyzed by DHZS to get excellent experiment results. And CL cannot be observed nearly when luminol with same concentration reacts with other oxidants, so luminol-DPC system has higher selectivity than other luminol CL systems. The method has been successfully applied to determine DHZS in serum.(Ⅲ) Direct oxidation by transition metals in highest oxidation state complex CL system possesses high selectivity which has been applied in determination of uric acid, lincomycin an adrenaline.Transition metals in highest oxidation state complex (DPC, DPN, DPA) are good oxidants in a medium with an appropriate pH value which can direct oxidate some compounds to emit CL. A flow injection CL method for the determination of uric acid, lincomycin and adrenaline based on the direct oxidation by transition metals in highest oxidation state complex CL system. The possible mechanism of direct oxidation CL system was first proposed based on the kinetic characteristic of the reaction, CL and fluorescence spectrum, UV spectra. In direct oxidation by transition metals in highest oxidation state complex CL system, uric, lincomycin react with DPA and DPN respectively by the oxidation of a single reversible two-electron transfer process to form excited complex of DPN-, DPA- analyte, then contributes CL emission by returning to ground state. But in DPN-adrenaline CL system, DPN oxidates adrenaline to produce excited 3,4-dihydroxyacetophenone which maximal fluorescence wavelength is located at 450 nm, then emit 450 nm CL by returning to ground state.(1) A novel flow-injection chemiluminescence determination of uric acid based on dihydroxydiperiodatoargentate (Ⅲ) oxidationA novel and high selectivity flow-injection chemiluminescence (FI-CL) system with dihydroxydiperiodatoargentate (Ⅲ) (DPA) is developed for the determination of uric acid for the first time. It is based on the reaction of dihydroxydiperiodatoargentate (Ⅲ) (DPA) with uric acid in alkaline medium to emit CL. With the peak height as a quantitative parameter applying optimum working conditions, the relative CL intensity was linear with the uric acid concentration in the range of 4.0×10-7-2.0×10-4 mol L-1 with a detection limit of 1.2×10-7 mol L-1(3σ). The relative standard deviation (RSD) was 2.1% for 5.0×10-5 mol L-1 uric acid (n=7). The proposed method hold higher selectivity than other CL methods and was applied to determination of uric acid in human serum. The possible CL reaction mechanism was also discussed briefly.(2) A novel chemiluminescence reaction system for the determination of lincomycin with dihydroxydiperiodatonickelate (Ⅳ)A sensitive and high selective chemiluminescence (CL) method was developed for the determination of lincomycin in acid medium using dihydroxydiperiodatonickelate (DPN) as oxidant. The mechanism leading to luminescence is discussed by comparing the spectra of fluorescence and CL. Relative CL intensity is linear in the range from 8.0×10-9-1.0×10-6 g mL-1, the limit of detection is 2.5×10-9g mL-1 (3a), and the relative standard deviation is 4.0% at 1.0×10-6g mL-1 of lincomycin (n=7). The method was successfully applied to determination of lincomycin in injections, human urine, and in serum samples.(3) A novel chemiluminescence reaction system for the determination of adrenaline with dihydroxydiperiodatonickelate (Ⅳ)A novel chemiluminescence (CL) system with dihydroxydiperiodatonickelate (Ⅳ) (DPN), for the first time, is developed for the determination of adrenaline. The possible CL emission mechanism was briefly discussed by comparing the fluorescence emission with CL spectra. Under the optimum conditions, the relative CL intensity was linear over the concentration ranging from 1.0×10-7 to 1.0×10-5 g mL-1 with a detection limit of 4.0×10-8 g mL-1(3σ) and relative standard deviation was 3.7 % for 2.0×10-6 g mL-1 adrenaline (n=11). The proposed method has been successfully applied to the determination of adrenaline in pharmaceutical preparations.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络