节点文献

基于融雪化冰的传导沥青路面优化设计及粘弹性响应分析

Analysis on Optimization Design and Viscoelastic Response of Conductive Asphalt Pavement Using Snowmelt

【作者】 王虹

【导师】 吴少鹏;

【作者基本信息】 武汉理工大学 , 材料学, 2010, 博士

【摘要】 利用沥青混凝土自身的优势,设计出高传导沥青路面用于冬季路面融雪是目前国内外专家学者普遍研究的课题。本文运用有限单元法利用传热学基本原理分析沥青路面的热传导系数、换热管道的埋管深度及埋管间距等对传导沥青路面夏季降温、冬季融冰的影响效果,确定出合理的埋管深度及埋管间距,并进行了室内外试验评价;对合理换热管道布置的传导沥青路面在移动荷载作用下的粘弹性响应进行分析,预估其设计疲劳寿命。本文预期的研究成果,不仅对机场跑道、道路、桥面的夏季降温、冬季融雪化冰方法具有重要的现实意义,而且对传导沥青路面的结构设计起到一定的指导作用。利用有限元软件ANSYS对传导沥青路面融雪性能进行优化设计。传导沥青路面融雪化冰时间与沥青混凝土材料导热系数呈幂指数关系;埋管越深,提高沥青混凝土的导热系数对融雪化冰效果越明显。传导沥青路面中换热管道可根据沥青铺装层的厚度分两种方式进行布置(沥青混凝土导热系数≥3.0W/(m·℃)):(1)埋管深度为10cm时埋管间距为0.1m;(2)埋管深度为4cm时埋管间距为0.15m。通过对传导沥青路面在夏季炎热条件下温度场分布研究得出:沥青路面最高温度出现在路表以下2cm处。传导沥青混凝土材料的选择可使得沥青路面最高温度降低3.8%以上。在换热管道内通入助冷剂(水)可有效降低道路表面及内部温度。对于导热系数为3.0W/(m·℃)的传导沥青路面而言,夏季在换热管道内通入助冷剂(25℃水)可使道路表面温度降幅达20%以上。采用有限元软件ABAQUS对埋管型传导沥青路面在移动荷载作用下的粘弹性响应进行了研究。得出了将沥青混合料粘弹性本构关系转换为Prony级数的方法。无论是埋有换热管道的传导沥青路面还是普通沥青路面,在行车荷载作用下最大拉应变均发生在铺装层下面层底部。换热管道可有效削弱中面层底部产生的最大拉应变。道路结构埋管与否以及埋何种换热管道对路面疲劳寿命影响不大,埋管型传导沥青路面可按普通沥青路面设计方法进行设计。

【Abstract】 It is a common research topic of many experts and scholars at present to design a type of conductive asphalt pavement which can be used to melting snow and ice in winter on the basis of the advantages of asphalt pavement itself. In the study, how some parameters affect the cooling in summer and melting snow of asphalt pavement in winter is analyzed. The parameters involve the thermal conductivity of asphalt pavement, the depth of heat exchange tubes and distances between tubes etc. And the logical depth of interred tubes and distance are given. Especially, the cooling and melting snow experiments of asphalt slabs are done in laboratory. The viscoelastic response of the conductive asphalt pavement with the logical depth of interred tubes and distances is analyzed in moving load. And the design fatigue life of the conductive asphalt pavement is forecasted. The study is expected to play a guiding role in structural design of the conductive asphalt pavement and have important practical significance in the cooling and melting snow of airport runway, road and bridge.The melting snow and ice performance of the conductive asphalt pavement with different interred tubes’ ways is studied using the finite element software ANSYS. And the design of the heat exchange tubes’ arrangement is optimized. The relation of the beginning melting-ice time of the conductive asphalt pavement and the thermal conductivity of asphalt pavement can be described by exponential function. The deeper the tubes are interred, the better to increase the thermal conductivity of asphalt pavement may improve the performance of melting snow and ice. The logical arrangement ways of the heat exchange tubes in the conductive asphalt pavement whose thermal conductivity is more than≥3.0W/(m·℃may be the following:(1) The distance between tubs is 0.1m when the depth of interred tubes is 10cm; (2) The distance between tubs is 0.15m when the depth of interred tubes is 4cm.The temperature distribution of the conductive asphalt pavement in summer is simulated by ANSYS. The results show that the 2cm from the surface to bottom is the maximum temperature of the asphalt pavement. To choose the conductive asphalt pavement can decrease the maximum temperature more than 3.8%. The road surface and internal temperature can be reduced effectively when the heat exchange tubes are full of cooling agent-water. And the decreasing temperature range is more than 20% when the thermal conductivity is 3.0W/(m·℃).The viscoelastic response of the conductive asphalt pavement with the logical depth of interred tubes and distances is analyzed in moving load using the finite element software ABAQUS. The transition method from viscoelastic constitutive relation of asphalt mixture to Prony series is given. The maximum tensile strain appears in the bottom of the bottom asphalt layer whether the pavement is conductive with interred tubes or common. The heat exchange tubes can weaken the maximum tensile strain of the bottom of the middle layer effectively. Whether the heat change tubes are interred in asphalt pavement has little effect on the fatigue life of the asphalt pavement. The asphalt pavement with tubes can be designed using the same method as the asphalt pavement without tubes.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络