节点文献

用于空间大气遥感的临边成像光谱仪研究

The Study on Limb Imaging Spectrometer for Space-based Atmospheric Remote Sensing

【作者】 薛庆生

【导师】 王淑荣;

【作者基本信息】 中国科学院研究生院(长春光学精密机械与物理研究所) , 光学工程, 2010, 博士

【摘要】 大气的探测和研究是地球和空间科学界共同关注的热点课题,用于空间大气遥感的临边成像光谱仪是一种新型空间光学遥感仪器。本文根据空间平台上对地球临边大气探测的应用要求,设计出一种结构紧凑的临边成像光谱仪光学系统,它由前置光学系统和光谱成像系统两部分组成,工作波段540-780nm(利用光栅的一级光谱)和270-390nm(利用光栅的二级光谱),通过转轮切换紫外/可见滤光片实现紫外/可见两个波段分别探测。根据前置光学系统覆盖的波段宽(270-780nm)且涵盖紫外波段的要求,分别设计出采用离轴抛物面镜的反射式和宽波段消色差折射式前置光学系统。光谱成像系统的设计选择平面光栅作为色散元件,在深入研究Czerny-Turner光谱成像系统像差校正的基础上,从宽波段像差同时校正和像散校正两方面对传统的Czerny-Turner结构进行了改进。采用改进的Czerny-Turner结构作为光谱成像系统的结构型式,设计出临边成像光谱仪的光谱成像系统。分别将反射式和折射式前置光学系统与改进的Czerny-Turner光谱成像系统匹配,设计出临边成像光谱仪全系统,两方案均满足设计指标要求。折射式前置光学系统可以避免非球面的使用,便于加工和装调。反射式前置光学系统可以减少光学元件的数量,能量利用率高,但加工有一定的难度。为方便加工和装调,本文研制的临边成像光谱仪原理样机采用宽波段消色差折射式前置光学系统与改进的Czerny-Turner光谱成像系统匹配组成的光学结构。研究了临边成像光谱仪原理样机光学系统的光谱辐射传输特性,对原理样机的信噪比进行了分析和估算,结果满足应用要求。编制了数据采集和处理软件,设计了机械结构,研制出临边成像光谱仪原理样机并进行了性能评价、波长定标和辐射定标,空间分辨率为0.44mrad,光谱分辨率为1.3nm(在632.8nm处)。波长定标精度优于0.12nm。利用积分球定标方法,标定了原理样机的光谱辐亮度响应度,消除了漫反射板的双向反射率分布函数(BRDF)的测量不确定度对定标精度的影响,定标合成不确定度为2.4%,从而实现了空间遥感临边成像光谱仪高精度辐射定标。以上性能评价结果和定标结果均满足指标要求。临边成像光谱仪原理样机的成功研制,填补了国内空白,为下一步工程样机的研制和最终实现临边成像光谱探测新技术在我国空间大气遥感领域的应用奠定了技术基础。

【Abstract】 Atmospheric sounding and research are the hot subjects which the earth and space scientific communities pay attention together. Limb imaging spectrometer for space-based atmospheric remote sensing is a new type space optics remote sensing instrument. In this paper, according to the application requirement to sound earth limb atmosphere on spatial platform, a compact optical system of limb imaging spectrometer is designed. It is composed of fore optical system and spectral imaging system. The spectral range is from 540nm to 780nm (using 1st order of the grating) and from 270nm to 390nm (using 2nd order of the grating). The limb imaging spectrometer records images of atmospheric limb from 540nm to 780nm when the visible filter is in place and from 270nm to 390nm when the UV filter is in place. The fore optical system not only covers a wide band (from 270nm to 780), but also includes UV band. The reflective and refractive fore optical systems are designed. The plane grating is choosed as the dispersion element of spectral imaging system. The traditional Czerny-Turner configuration is modified in broad band aberration correction simultaneity and astigmatism correction based on the study on the aberration correction in Czerny-Turner spectral imaging system. The spectral imaging system is designed using the modified Czerny-Turner configuration. Optical systems of limb imaging spectrometer are designed with reflective and refractive fore optical systems matched with the modified Czerny-Turner spectral imaging system. Both schemes can satisfy the design requirement. The refractive fore optical system can avoid of using aspheric surface, therefore it is advantagesous for fabrication and alignment. The reflective fore optical system can reduce the amount of optical elements, so the energy usage ratio is high, but its fabrication is difficult.For the convenience of fabrication and alignment, the limb imaging spectrometer prototype uses the refractive fore optical system matched with the modified Czerny-Turner spectral imaging system. The spectroradiometric transfer characteristic of optical system is researched, and the SNR of the prototype is analyzed and estimated. The data acquisition and processing software is programmed, and the mechanism is designed. The limb imaging spectrometer prototype is developed, and performance evaluation, wavelength calibration and radiometric calibration are performed. The spatial resolution is 0.44mard, spectral resolution is 1.3nm (at 632.8nm), and wavelength calibration precision is 0.12nm. Using an integrating sphere, the spectral radiance responsivities of the prototype is calibrated. The effect of the uncertainties in measurements of bidirectional reflectance distribution function (BRDF) of the diffuser is eliminated and the composite uncertainty is 2.4%, so high precision radiometric calibration of limb imaging spectrometer for space-based remote sensing is achieved. The performance evaluation and calibration results satisfy requirements. The successful development of the prototype fills up domestic blank, and provides technical foundations for development of engineering prototype and application of limb imaging spectral technique in space-based atmospheric remote sensing in our country in future.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络