节点文献

半导体激光器腔面光学膜关键技术研究

The Investigation of the Key Technology for Semiconductor Laser Face Coating

【作者】 李再金

【导师】 王立军;

【作者基本信息】 中国科学院研究生院(长春光学精密机械与物理研究所) , 凝聚态物理, 2010, 博士

【摘要】 本文围绕半导体激光器所使用的光学薄膜进行了研究与制备。针对高功率半导体激光器对高激光损伤阈值光学膜的要求,主要研究了以下几方面内容:第一,从半导体激光器光学薄膜设计理论出发,对1/4λ周期性多层薄膜的光谱特性和反射带宽进行了分析,并讨论了半导体激光器光学薄膜中的损耗和激光在光学薄膜中的电场强度分布情况,为高激光损伤阈值腔面光学膜的设计和制备提供了理论依据和参考。第二,以半导体激光器理论为依据,系统的模拟了与腔面光学膜相关的边发射半导体激光器的特性,主要包括阈值电流、斜率效率和输出激光功率与前后腔面光学膜反射率之间的关系。模拟结果表明当前后腔面光学膜的反射率取最佳值时,半导体激光器的输出功率达到最大值。第三,研究了边发射半导体激光器腔面灾变光学镜面损伤机理。研究结果表明半导体激光器产生灾变光学镜面损伤最主要的原因是半导体激光器腔面的氧化,抑制半导体激光器腔面的氧化,可以提高光学薄膜激光损伤阈值、半导体激光器的输出功率和器件的可靠性。第四,采用钝化新技术制备了边发射半导体激光器腔面光学薄膜,器件特性测试结果表明钝化技术可使输出功率提高36%,相应薄膜激光损伤阈值提高36%。同时优化设计并制备了垂直腔面发射半导体激光器出光窗口增透膜,增透膜的透射率达到99.95%,成功应用于大功率垂直腔面发射激光器制作工艺中,使出光口径为600μm的单管器件输出功率为2.3W,达到国内报道最好水平。第五,通过实验首次验证了含氧光学薄膜材料和钝化光学薄膜材料对半导体激光器腔面产生的影响,实验测试结果表明含氧光学薄膜会使半导体激光器腔面发生氧化,生成Ga2O3氧化物,增加腔面吸收,降低薄膜激光损伤阈值和输出功率,而钝化光学薄膜可以阻止半导体激光器腔面的氧化,阻止Ga2O3氧化物的生成,降低了腔面载流子复合,提高薄膜的激光损伤阈值和器件的输出功率。

【Abstract】 In this dissertation, the research work on the optical coating in the laser diode is presented. To achieve high laser damage threshold for the high power laser diode, the main research contents include:Firstly, based on the laser diode optical coating design theory, the spectral characteristics of 1/4λperiodic multilayer coatings and reflection bandwidth are analyzed, and the loss of the semiconductor laser diode optical coating and the distribution of the electric field intensity of laser in the optical coatings are discussed, for providing a theoretical basis and reference of high laser damage threshold face coating design and fabrication.Secondly, based on semiconductor laser theory, the characteristics of edge emitting semiconductor laser diode which related to optical coating are simulated, including the relationship of threshold current, slope efficiency and output laser power with the reflectance of the before and after the cavity surface optical coatings. Simulation results show that, when the reflectance of before and after cavity surface optical coatings to take the optimum value, the edge emitting semiconductor lasers diode of the output laser power reached the maximum.Thirdly, the semiconductor laser diode face catastrophic optical mirror damage mechanisms are studied. The result show that the main reason of semiconductor lasers producing catastrophic optical mirror damage is the semiconductor laser face surface oxidation, inhibiting the oxidation of the semiconductor laser face surface, it can enhance the laser damage threshold of optical coating, output laser power and device reliability.Fourthly, face coatings of edge emitting semiconductor laser diode are fabricated by passivation of new technologies. The result show that output power of the devices is increased 36% by passivation technologies, and the optical coatings laser damage threshold is improved 36%. The antireflection coatings of vertical cavity surface laser diode are fabricated. The transmittance of antireflection coatings is 99.95%; successfully applied to high-power vertical cavity surface emitting laser production process ang the output power is 2.3W for the aperture of 600μm single-tube device, and it is achieving the leading domestic level.Fifthly, the impact of the oxygen optical coating materials and passivation optical coating materials to semiconductor laser face surface are verified through experiments for the first time. The results show that it is forming Ga2O3 oxide between the oxygen optical coatings and the laser diode wafer material, increasing face absorption, reducing optical coating laser damage threshold and the output power, but the passivation coatings can prevent laser diode wafer material from oxidation, and prevent formation Ga2O3 oxide, reduce the face surface carriers recombination and can improve laser damage threshold and the laser diode output power.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络