节点文献

分子基纳米材料:高核金属氧簇的合成、组装及其性能的研究

Molecule-Based Nanomaterials: Synthesis, Assembly and Functionality Study of the High-Nuclearity Metal-Oxygen Clusters

【作者】 张志明

【导师】 王恩波;

【作者基本信息】 东北师范大学 , 无机化学, 2010, 博士

【摘要】 高核金属氧簇作为一类重要的分子基纳米材料,由于其结构的多样性和性能上的均一性而受到了广泛的关注。这类高核金属氧簇化合物,尤其是具有蛋白质尺寸的金属氧簇化合物,在化学仿生,分子磁体,催化,能量存储以及多功能材料等领域被广泛应用,现不仅成为金属氧簇化学发展的新生长点之一,而且成为金属氧簇化学通往“合成生物学”的桥梁。本论文主要选用含氧多齿配体与过渡金属离子或稀土金属离子,设计合成了多种结构新颖的高核金属氧簇,探讨了这些高核金属氧簇的合成条件与合成规律,分析了新型簇合物结构和功能特性间的关系。本文采用常规水溶液方法和水热技术合成了36例高核金属氧簇类化合物,并通过IR、元素分析、ESR、紫外-可见光谱和单晶X-射线衍射分析等方法对晶体结构进行了表征与分析。对这些簇合物的磁学特性、热稳定性、电化学-电催化性质和吸附性能进行了初步研究。1.利用缺位型多酸,主要是二缺位的{γ-SiW10},单缺位的{β-SiW11}和六缺位的{P2W12}为前躯体合成了20个基于Keggin型缺位多酸的钨簇类化合物。化合物1-6是多镍取代的夹心型钨簇,两个缺位多酸片段之间分别含有一个由4到7个Ni2+离子组成的镍簇,其中化合物1和4分别含有两种不同的缺位多酸片段;化合物7-11是多核铜取代的多钨酸盐簇合物,化合物7和8是分别含有14个和10个Cu2+离子的四聚型高核钨簇化合物,化合物7是第一例基于四个{β-SiW8}的高核钨簇化合物;化合物9-11中,夹心型多酸单元通过自缩合或被表面修饰的Cu2+离子连接构筑成纯无机的一维链状结构;化合物12-17是多锰取代的夹心型钨酸盐簇,其中化合物12和13是含有6个MN2+离子的夹心型单体化合物,化合物14和15是以夹心型阴离子为建筑单元构筑的纯无机的一维结构,化合物16是由夹心型阴离子构筑的二维结构,化合物17是一个含有6个混价锰离子的双夹心型结构的多钨酸盐,化合18-20是多钴取代的夹心型多钨酸盐。Na9K[Ni7(OH)4(H2O)(CO32(HCO3)(A-α-SiW9O34)(β-SiW10O37)]·5H3O·18H2O (1) K6Na4[Ni6(H2O)4(μ2-H2O)4(μ3-OH)2(x-SiW9O34)2]·17.5H2O (2) K12[(SiW8O31)2Ni7(H2O)4(OH)6]·23H2O (3) K6Na18[H2{Ni5(H2O)5(OH)3(x-SiW9O34)(β-SiW8O31)}2]·39H2O (4) (NH42[Ni4(enMe)8(H2O)2Ni4(enMe)2(PW9O34)2]·9H2O (5) Na2[H6N2(CH26]2{Ni4[H4N2(CH26]2(H2PW9O34)2}·7H2O (6) Na16[Cu14(OH)4(H2O)16(SiW8O31)4]·20.5H2O (7) K10Na14[Cu10(H2O)2(N3)4(GeW9O34)2(GeW8O31)2]·30H2O (8) K2Na10[Cu4(GeW9O34)2]·15.5H2O (9) K4Na4[Cu2(H2O)8Cu4(H2O)2(B-α-GeW9O34)2]·14H2O (10) K8[Cu2(H2O)8Cu4(H2O)2(B-α-SiW9O34)2]·4H2O (11)K2Na2MN2(H2O)12[MN2(H2O)10Mn4(H2O)2(GeW9O34)2]·18H2O (12) K2Na2MN2(H2O)12[MN2(H2O)10Mn4(H2O)2(SiW9O34)2]·18H2O (13) Na4[Mn4(H2O)18Mn4(H2O)2(GeW9O34)2]·22H2O (14) Na4[Mn4(H2O)18Mn4(H2O)2(SiW9O34)2]·22H2O (15) K3Na5[MN2(H2O)6Mn4(H2O)2(SiW9O34)2]·23.5H2O (16) K3Na10H3[{MnII(H2O)}2MnШ4(SiW6O26)(SiW9O34)2]·26H2O (17) K4Na6Co2(H2O)12{Co(H2O)4[Co2(H2O)10Co4(H2O)2(B-α-SiW9O34)2]2}·40H2O (18) K4Na4[Co2(H2O)10Co4(H2O)2(B-α-GeW9O34)2]·28.5H2O (19) K2Na6[Co2(H2O)10Co4(H2O)2(B-α-SiW9O34)2]·17H2O (20)2.利用六缺位的Wells-Dawson型多酸{P2W12}与过渡金属离子反应合成了7个基于Dawson型缺位多酸的多钨酸盐簇。化合物21-23是首例基于{P2W12}的三聚冠状高核钨簇,其内部的空穴可以选择性地捕获过渡金属离子以及碱金属离子;化合物24是第一个基于{P4W24}的纯无机的高核钨簇;化合物25是由{P2W12}降解结合W原子和过渡金属离子形成的双Dawson型结构化合物;化合物26是由双Dawson型阴离子25通过表面修饰的铜离子连接形成的具有两种孔道的二维层状结构;化合物27是一个单铜取代的Dawson型单体结构的化合物。K4Na15[K3{Mn(H2O)4}2{WO2(H2O)2}2{WO(H2O)}3(P2W12O48)3]·77H2O (21) K3Na7Li5.5Ni0.25[Na3{Ni3.5(H2O)13}{WO2(H2O)2}2{WO(H2O)}3(P2W12O48)3]·64H2O(22) K6Na11[Na3{Cu3(H2O)9}{WO2(H2O)2}2{WO(H2O)}3(P2W12O48)3]·47H2O (23) Na17K3[{W2Co2O8(H2O)2}(P2W12O46)2]·30H2O (24) K4Na10[α1-CuP2W17O60(OH)]2·58H2O (25) Na2[H2en][H2hn]0.5[Cu(en)2]4.5[α1-CuP2W17O60(OH)]2·43H2O (26) Na3[H2hn]2.5[α1-P2W17O60Cu(OH)2]·14H2O (27)3.利用缺位的Keggin型多酸与过渡金属和稀土金属离子反应得到了4个含有3d-4f混合金属簇的多钨酸盐。化合物28是由两个{β-SiW8O31}片段中心包括一个{CeMnШ4}簇构成的,其中的四个锰离子组成了近立方烷的构型;化合物29含有一个经典的四核夹心型结构,然后通过表面修饰的Nd3+离子连接形成了(3,6)-连接的框架结构;化合物30和31是分别含有6个Dy-Fe和Tb-Fe簇的六聚高核钨簇,是目前含有3d-4f混合金属簇数目最多的高核钨簇。K10Na[{CeMnШ4(u3-OH)2O2(H2O)(HCO3)}(β-SiW8O31)2]·21.5H2O (28) K3Na3{Nd2(H2O)12Cu4(H2O)2(SiW9O34)2}·21H2O (29) (H2en)12[Na2K9?Dy6Fe6(H2O)12(SiW10O38)6]·36H2O (30) K4Na14[H2en]4[K9?Tb6Fe6(H2O)12(SiW10O38)6]·41H2O (31)4.首先利用钨酸钠与Fe3+离子在硫酸溶液中自组装合成了一个含有30个Fe3+离子Keplerate型的球型簇(化合物32),该簇中12个五角星型的{W(W)5}片段作为十齿配体与30个Fe3+配位形成了高核含铁金属氧簇。通过前几项的研究可以发现,多酸作为无机含氧多齿配体可以和过渡金属离子形成各种各样的簇合物结构。这里利用手性有机含氧多齿配体与Fe3+离子反应合成了4个高核铁簇。化合物33和34是一对旋光纯的手性对应异构体,分别含有具有蛋白质尺寸的Fe168笼;化合物35和36也是一对旋光纯的手性对应异构体,是含有28核Fe3+的高核铁轮。K6{[W6(SO4)(H2O)3O21]12[Fe(H2O)2]30}·106H2O (32) Na96[Na24Fe168(L-Tart)96(μ3-O)48(HCOO)144]·310H2O (33) Na96[Na24Fe168(D-Tart)96(μ3-O)48(HCOO)144]·310H2O (34) K2Na18[Fe28(μ3-O)8(L-(–)-tart)16(CH3COO)24]·29H2O (35) K2Na18[Fe28(μ3-O)8(D-(+)-tart)16(CH3COO)24]·29H2O (36)

【Abstract】 High-nuclearity metal-oxygen clusters, as one kind of important molecule-based nanomaterials, have attracted great attention owing to their unique structural variety and interesting physicochemical properties. The high-nuclearity metal-oxygen clusters, especially for molecule-based protein-sized complexes, can be used in the area of chemical bionics, moleculer magnets, catalysis, energy storage and multifunctional materials. Now, they have not only become a new growing point of the metal-oxygen cluster chemistry, but also become a bridge for the metal-oxygen cluster chemistry leading to the“synthetic biology”. In this paper, a series of novel high-nuclearity metal-oxygen clusters have been synthesized by the use of the inorganic or organic oxo-containing polydentate ligands, transition metal cations and/or the Ln cations. The studies on the synthetic conditions and rules for high-nuclearity metal-oxygen clusters, and the relationships between structures and properties for these new clusters were also carried out.Thirty-six metal-oxygen clusters have been synthesized by the conventional aqueous solution methods and hydrothermal technique, and structurally characterized by IR, elemental analyses, ESR, UV-vis and single crystal X-ray diffractions. The magnetic properties, thermal stabilities, electrochemical-electrocatalytic properties and adsorption property of these compounds have been studied.1. Twenty new heteropolytungstate clusters have been synthesized by the use of the divacant {γ-SiW10}, monovacant {β-SiW11} and the hexavacant {P2W12} POM building blocks. Compounds 1-6 are the multi-nickel-substituted sandwich-type polytungstate clusters. There are four to seven Ni2+ ions sandwiched between two lacunary POM fragments. Compounds 1 and 4 contain two different lacunary POM fragments. Compounds 7-11 are the multi-copper-substituted polytungstate clusters. Compounds 7 and 8 are all the tetramers, which contain 14 and 10 Cu2+ ions, respectively. Compound 7 represents the first tetramer composed of four tetravacant {β-SiW8} units. In compounds 9-11, the sandwich-type polyoxoanions are all exhibit the 1D chain-like structure. Compounds 12-17 are the multi-manganese-substituted sandwich-type polytungstates. Compounds 14 and 15 are the 1D chains constructed from the sandwich-type polyoxoanions. Compound 16 is the 2D layer constructed from the sandwich-type polyoxoanions. Compound 17 is a double-sandwich structure containing six manganese ions in the two sandwich sets. The six manganese ions are in the +3 and +2 valence. Compounds 18-20 are the multi-Co-substituted sandwich-type popytungstates. Na9K[Ni7(OH)4(H2O)(CO32(HCO3)(A-α-SiW9O34)(β-SiW10O37)]·5H3O·18H2O (1) K6Na4[Ni6(H2O)4(μ2-H2O)4(μ3-OH)2(x-SiW9O34)2]·17.5H2O (2) K12[(SiW8O31)2Ni7(H2O)4(OH)6]·23H2O (3) K6Na18[H2{Ni5(H2O)5(OH)3(x-SiW9O34)(β-SiW8O31)}2]·39H2O (4) (NH42[Ni4(enMe)8(H2O)2Ni4(enMe)2(PW9O34)2]·9H2O (5) Na2[H6N2(CH2)6]2{Ni4[H4N2(CH2)6]2(H2PW9O34)2}·7H2O (6) Na16[Cu14(OH)4(H2O)16(SiW8O31)4]·20.5H2O (7) K10Na14[Cu10(H2O)2(N3)4(GeW9O34)2(GeW8O31)2]·30H2O (8) K2Na10[Cu4(GeW9O34)2]·15.5H2O (9) K4Na4[Cu2(H2O)8Cu4(H2O)2(B-α-GeW9O34)2]·14H2O (10) K8[Cu2(H2O)8Cu4(H2O)2(B-α-SiW9O34)2]·4H2O (11) K2Na2MN2(H2O)12[MN2(H2O)10Mn4(H2O)2(GeW9O34)2]·18H2O (12) K2Na2MN2(H2O)12[MN2(H2O)10Mn4(H2O)2(SiW9O34)2]·18H2O (13) Na4[Mn4(H2O)18Mn4(H2O)2(GeW9O34)2]·22H2O (14) Na4[Mn4(H2O)18Mn4(H2O)2(SiW9O34)2]·22H2O (15) K3Na5[MN2(H2O)6Mn4(H2O)2(SiW9O34)2]·23.5H2O (16) K3Na10H3[{MnII(H2O)}2MnШ4(SiW6O26)(SiW9O34)226H2O (17) K4Na6Co2(H2O)12{Co(H2O)4[Co2(H2O)10Co4(H2O)2(B-α-SiW9O34)2]2}·40H2O (18) K4Na4[Co2(H2O)10Co4(H2O)2(B-α-GeW9O34)2]·28.5H2O (19) K2Na6[Co2(H2O)10Co4(H2O)2(B-α-SiW9O34)2]·17H2O (20)2. Seven polyoxotungstate clusters have been synthesized by reaction of the hexavacant Wells-Dawson polyoxoanions {P2W12} with the transition metal cations. Compounds 21-23 are all the crown-type high-nuclearity clusters composed of three {P2W12} subunits, the cavity in these three compounds have potentially adjustable capability of combining“guest”metal ions, which was observed for the first time in the POM chemistry. Compound 24 is a dimeric structure consisting of the {P2W12} units, which represent the first pure inorganic cluster based on the {P4W24} units. Compound 25 is a double-Dawson type polyoxoanions, and compound 26 is the first 2D layer constructed from the double-Dawson type polyoxoanions. Compound 27 is a copper-substituted Dawson-type monomer. K4Na15[K3{Mn(H2O)4}2{WO2(H2O)2}2{WO(H2O)}3(P2W12O48)3]·77H2O (21) K3Na7Li5.5Ni0.25[Na3{Ni3.5(H2O)13}{WO2(H2O)2}2{WO(H2O)}3(P2W12O48)3]·64H2O(22) K6Na11[Na3{Cu3(H2O)9}{WO2(H2O)2}2{WO(H2O)}3(P2W12O48)3]·47H2O (23) Na17K3[{W2Co2O8(H2O)2}(P2W12O46)2]·30H2O (24) K4Na10[α1-CuP2W17O60(OH)]2·58H2O (25) Na2[H2en][H2hn]0.5[Cu(en)2]4.5[α1-CuP2W17O60(OH)]2·43H2O (26) Na3[H2hn]2.5[α1-P2W17O60Cu(OH)2]·14H2O (27)3. Four 3d-4f heterometallic clusters have been synthesized by reaction of the lacunary Keggin polyoxoanions with the transition metal and Ln cations. Compound 28 is a sandwich-type structure composed of two {β-SiW8O31} units sandwiching a {CeMnШ4} cluster. The four MnШin compound 28 constitute a cubane-like unit. Compound 29 is a (3,6)-connected 2D layer-like structure composed of the sandwich polyoxoanions and the Nd3+ linkers. Compounds 30 and 31 are the hexamers containing six 3d-4f heterometallic clusters Dy-Fe and Tb-Fe, respectively. K10Na[{CeMnШ4(u3-OH)2O2(H2O)(HCO3)}(β-SiW8O31)2]·21.5H2O (28) K3Na3{Nd2(H2O)12Cu4(H2O)2(SiW9O34)2}·21H2O (29) (H2en)12[Na2K9?Dy6Fe6(H2O)12(SiW10O38)6]·36H2O (30) K4Na14[H2en]4[K9?Tb6Fe6(H2O)12(SiW10O38)6]·41H2O (31)4. Firstly, a Keplerate-type sphere-like cluster has been synthesized by self-assembly of the Na2WO4 and the Fe3+ions in the vitriol solution (compound 32), which contains 12 pentagram {W(W)5} fragments linked by 30 Fe3+ ions. Here, the chiral tartaric acid ligands are used to react with the Fe3+ ions, and four enantiomerically pure chiral ferric aggregates are obtained. Compounds 33 and 34 are a pair of enantiomers composed of the protein-sized Fe168 cages. Compounds 35 and 36 are also a pair of enantiomers containing a high-nuclear Fe28 wheel. K6{[W6(SO4)(H2O)3O21]12[Fe(H2O)2]30}·106H2O (32) Na96[Na24Fe168(L-Tart)96(μ3-O)48(HCOO)144]·310H2O (33) Na96[Na24Fe168(D-Tart)96(μ3-O)48(HCOO)144]·310H2O (34) K2Na18[Fe28(μ3-O)8(L-(–)-tart)16(CH3COO)24]·29H2O (35) K2Na18[Fe28(μ3-O)8(D-(+)-tart)16(CH3COO)24]·29H2O (36)

节点文献中: 

本文链接的文献网络图示:

本文的引文网络