节点文献

Ⅰ.毛叶丁公藤化学成分及药理活性研究 Ⅱ.砂珍棘豆化学成分及药理活性研究

1.Studies on the Chemical Constituents and Bioactivities of Erycilbe Hainanesis 2.Studies on the Chemical Constituents and Bioactivities of Oxytropis Racemosa

【作者】 宋爽

【导师】 张培成; 陈若芸; 于德泉;

【作者基本信息】 中国协和医科大学 , 药物化学, 2010, 博士

【摘要】 第一部分毛叶丁公藤化学成分及药理活性研究毛叶丁公藤(Erycibe hainanesis Merr)为旋花科(Convolvulaceae)丁公藤属(Erycibe roxb)植物,产于广东、海南和广西。同属植物丁公藤(E.obtusfolia Benth)与光叶丁公藤(E.schmidtii Craib)为传统药物,具有祛风除湿、消肿止痛的功效。毛叶丁公藤根和茎的醇提物经萃取分为石油醚层、乙酸乙酯层、正丁醇层和水层4个部分。本实验对其中的乙酸乙酯层和正丁醇层进行了化学成分研究。采用多种色谱手段分离得到52个化合物,并运用光谱方法和化学方法鉴定了它们的结构,其中23个为未见报道的新化合物。这52个化合物包括:eryciboside A (1*),eryciboside B(2*),eryciboside C(3*),eryciboside D(4*),eryciboside E(5*), eryciboside F(6*),eryciboside G(7*),eryciboside H(8*),eryciboside I(9*), eryciboside J(10*),eryciboside K(11*),eryciboside L(12*),eryciboside M(13*), eryciboside N(14*),khaephuoside B(15),albibrissinoside A(16),1-O-[6-O-(5-O-丁香酰基-β-D-呋喃芹糖)-β-D-吡喃葡萄糖]-3,4,5-三甲氧基苯(17),seguinoside E (18),eryciboside O(19*),eryciboside P(20*),eryciboside Q(21*),4-O-丁香酰基-5-O-咖啡酰基奎宁酸(22*),3-O-丁香酰基-5-O-咖啡酰基奎宁酸(23*),4-O-咖啡酰基-5-O-丁香酰基奎宁酸(24*),4-O-香草酰基-5-O-咖啡酰基奎宁酸甲酯(25*),3-O-丁香酰基-5-O-咖啡酰基奎宁酸甲酯(26),4-O-丁香酰基-5-O-咖啡酰基奎宁酸甲酯(27),绿原酸(28),绿原酸甲酯(29),绿原酸乙酯(30),绿原酸丁酯(31),4,5-O-双咖啡酰基奎宁酸乙酯(32),4,5-O-双咖啡酰基奎宁酸丁酯(33),4-{2-[3-(4-hydroxy-3,5-dimethoxyphenyl)-3-O-β-glucopyranosyl-propan-1-ol]}-O-pinoresinol (34*),丁香树脂酚双葡萄糖苷(35),lyoniresinol 3 a-O-β-D-glucopyranoside(36),aketrilignoside B(37),7R,8R,8’S-aketrilignoside B(38),6,6′-二甲氧基-7-羟基-3,7′-O-双香豆素(39*),7,7’-二羟基-6,6’-二甲氧基-3,3′-双香豆素(40),东莨菪素(41),东莨菪苷(42),N-反式-对羟基苯乙基香豆酰胺(43),N-反式-对羟基苯乙基阿魏酰胺(44),N-顺式-对羟基苯乙基阿魏酰胺(45),咖啡酸(46),3-(2,4,5-三羟基苯基)丙酸甲酯(47),3,4-二羟基苯甲酸(48),3-羟基-4-甲氧基苯甲酸(49),β-谷甾醇(50),胡萝卜苷(51),长链脂肪醇(52)。采用多种药理模型对毛叶丁公藤的部分粗提物和单体进行了活性筛选,结果显示,乙酸乙酯层在剂量为100 mg/kg时皮下注射给药对巴豆油致小鼠耳部炎症的抑制率为38.9%;石油醚层对人结肠癌细胞和人肺腺癌细胞具有细胞毒活性,IC50分别为42.02和33.27μg/mL;乙酸乙酯层对人胃癌细胞具有选择性细胞毒活性,IC50为42.51μg/mL;正丁醇层对人结肠癌细胞具有选择性细胞毒活性,IC50为2.27μg/mL;化合物2,6,10,12-14,19,21,34,37,39,42对D-GalN引起的肝细胞损伤有保护作用(在浓度1×10-4 M或1×10-5M时,细胞成活率为34~61%);化合物2,6和7在10-6M浓度水平对小鼠腹腔巨噬细胞NO的生成均有明显的抑制作用,抑制率分别为54.30,46.24和123.58%;化合物2和24在10-5M浓度水平对PAF刺激的多形核白细胞β葡萄糖苷酸酶释放具有抑制作用,抑制率分别为52.6和55.7%;化合物22和30显示了对流感病毒神经氨酶的抑制作用,IC50分别为30.65和38.81/μg/mL;化合物28和39分别对人卵巢癌细胞(A2780,IC50为9.60×10-6M)和人肝癌细胞(Bel-7402,IC50为7.67×10-6M)具有选择性细胞毒活性;化合物43和44在31.25μM浓度水平显示了对alpha-葡萄糖苷酶的抑制作用,抑制率分别为92.6%和44.1%。第二部分砂珍棘豆的化学成分及药理活性研究砂珍棘豆(Oxytropis racemosa Turcz.)是豆科(Leguminosae)棘豆属(OxytropisDC.)多年生草本植物,产于甘肃、宁夏、内蒙古、陕西。砂珍棘豆在藏药和蒙药中应用广泛,具有消食健脾的功效,主治小儿消化不良,它的化学成分和现代药理研究暂无报道。采用各种分离手段从砂珍棘豆全草的乙醇提取物中分离得到19个化合物,其中3个是新的连有酰基的黄酮醇苷类化合物。运用光谱方法和化学方法鉴定它们的结构为:鼠李黄素3-O-[3-羟基-3-甲基戊二酸单酰基(1→6)]-β-葡萄糖苷(1*),鼠李柠檬素3-O-[3-羟基-3-甲基戊二酸单酰基(1→6)]-β-葡萄糖苷(2*),异鼠李黄素3-O-{[3-羟基-3-甲基戊二酸单酰基(1→6)]-[α-鼠李糖(1→2)]}-β-葡萄糖苷(3*),刺槐素7-O-芸香糖苷(4),鼠李柠檬素3-O-葡萄糖苷(5),槲皮索3-O-β-葡萄糖苷(6),芦丁(7),鼠李黄素3-O-β-葡萄糖苷(8),异鼠李素3-O-β-葡萄糖苷(9),异鼠李黄素3-O-β-芸香糖苷(10),鼠李黄素3-O-α-阿拉伯糖苷(11),槲皮素3-O-α-吡喃阿拉伯糖苷(12),(2R,3R)-二氢山奈酚4′-O-β-葡萄糖苷(13),染料木黄酮4′-O-β-葡萄糖苷(14),尿嘧啶(15),腺苷(16),β-谷甾醇(17),胡萝卜苷(18),长链脂肪酸酯(19)。对砂珍棘豆的部分单体化合物进行了药理活性筛选,结果显示,化合物2对D-GalN引起的肝细胞损伤具有保护作用,在1×10-4 M浓度下,成活率为50%;化合物2和9分别对人结肠癌细胞(HCT-8)和人肺腺癌细胞(A549)具有选择性细胞毒作用,IC50分别为6.38×10-6M和5.20×10-6M。

【Abstract】 Erycibe hainanesis Merr. (family Convolvulaceae) is distributed in Guangdong, Hainan, and Guangxi Provinces of the People’s Republic of China. E. obtusfolia Benth and E. schmidtii Craib which belong to the same genus as E. hainanesis are used in traditional medicine to relieve symptoms of rheumatoid arthritis.The EtOH extract of the roots and stems of E. hainanesis was suspended in H2O, and then sequentially partitioned with petroleum ether, EtOAc, and n-BuOH. The n-BuOH and EtOAc fractions were subjected to separation using various column chromatographic techniques to afford 52 compounds, including 23 new compounds. On the basis of spectroscopic and chemical methods, their structures were established as follows:eryciboside A (1*), eryciboside B (2*), eryciboside C (3*), eryciboside D (4*), eryciboside E (5*), eryciboside F (6*), eryciboside G (7*), eryciboside H (8*), eryciboside I (9*), eryciboside J (10*), eryciboside K (11*), eryciboside L (12*), eryciboside M (13*), eryciboside N (14*), khaephuoside B (15), albibrissinoside A (16), 1-O-[6-O-(5-O-syringoyloyl-β-D-apiofuranosyl)-β-D-glucopyranosyl]-3,4,5-trimethoxybenzene (17), seguinoside E (18), eryciboside O (19*), eryciboside P (20*), eryciboside Q (21*),5-O-caffeoyl-4-O-syringoylquinic acid (22*), 5-O-caffeoyl-3-O-syringoylquinic acid (23*),4-0-caffeoyl-5-Osyringoylquinic acid (24*),5-O-caffeoyl-4-O-vanilloylquinic acid methyl ester (25*),5-O-caffeoyl-3-O-syringoylquinic acid methyl ester (26),5-O-caffeoyl-4-O-syringoylquinic acid methyl ester (27), chlorogenic acid (28), methyl chlorogenate (29), ethyl chlorogenate (30), butyl chlorogenate (31), ethyl 3,4-dicaffeoylquinate (32), butyl 3,4-dicaffeoylquinate (33),4-{2-[3-(4-hydroxy-3,5-dimethoxyphenyl)-3-O-β-glucopyranosyl-propan-l-ol]}-O-pinoresinol (34*), syringaresinol-di-O-β-D-glucopyranoside (35), lyoniresinol 3a-O-β-D-glucopyranoside (36), aketrilignoside B (37),7R,8R,8’S-aketrilignoside B (38),7-hydroxy-6,6’-dimethoxy-3,7’-O-bis-coumarin (39*),7,7’-dihydroxy-6,6’-dimethoxy-3,3’-bis-coumarin (40), scopoletin, (41), scopolin (42), trans-.N-(p-coumaroyl)tyramine (43), trans-N-feruloyltyramine (44), cis-N-feruloyltyramine (45), caffeic acid (46), methyl 3-(2,4,5-trihydroxyphenyl)propanoate (47),3,4-dihydroxybenzoic acid (48), 3-hydroxy-4-methoxy benzoic acid (49),β-sitosterol (50), daucosterol (51), long-chain fatty alcohol (52). Bioacitivities of some fractions and compounds from E. hainanesis were screened by various pharmaceutical models. The EtOAc fraction of EtOH extract of E. hainanesis showed obvious anti-flammatory activity against croton oil-induced rat ear edema with a inhibitory rate of 38.9% at 100 mg/kg; the petroleum ether fraction exhibited selective cytotoxicities with IC50 values of 42.02μg/mL against HCT-8 and 33.27μg/mL against A549; the EtOAc and n-BuOH fractions showed selective cytotoxicities, with IC50 values of 42.51μg/mL against BGC-823 and 2.27μg/mL against HCT-8, respectively; compounds 2,6,10,12-14,19,21,34,37,39, and 42 showed hepatoprotective effects against D-galactosamine-induced toxicity in WB-F344 cells, with cell survival rates of 34-61% at 1×10-5-1×10-4 M; compounds 2, 6, and 7 displayed inhibitory effects on nitric oxide production by macrophages stimulated with LPS, with inhibitory rates of 54.30,46.24, and 123.58%, respectively, at a concentration of 10"6 M; compounds 2 and 24 exhibited inhibitory effects on the release ofβ-glucuronidase rat polymorphous nuclear leukocytes activated by platelet activating factor (PAF), with inhibitory rates of 52.6 and 55.7%, respectively, at a concentration of 10"5 M; compounds 22 and 30 showed inhibitory effects on influenza neuraminidase, and they gave IC50 values of 30.65 and 38.81μg/mL, respectively; compounds 28 and 39 showed selective cytotoxicities, with IC50 values of 9.60×10-6 M against A2780 and 7.67×10-6 M against Bel-7402, respectively; compounds 43 and 44 showed moderate a-glucosidase enzyme inhibition with IC50 values of 92.6% and 44.1%, respectively, at a concentration of 31.25μM. Oxytropis racemosa Turcz (family Leguminosae) is distributed in the provinces of Gansu, Ningxia, Inner Mongolia, and Shanxi. It is an important Mongolian and Tibetan medicine, and its promoting digestion and invigorating the spleen properties have been applied to children’s indigestion. However, studies on the chemical constituents and bioactivities have not been reported so far.The EtOH extract of the whole plant of O. racemosa was subjected to separation using various separation techniques to afford 19 compounds, three of which are new acylated flavonol glycosides. On the basis of spectroscopic and chemical methods, their structures were established as follows:rhamnetin 3-O-[3-hydroxy-3-methylglutaroyl(1→6)]-β-glucopyranoside (1*), rhamnocitrin 3-O-[3-hydroxy-3-methylglutaroyl(1→6)]-β-glucopyranoside (2*), isorhamnetin 3-O-{[3-hydroxy-3-methy lglutaroyl(1→6)] [α-rhamnopyranosy1(1→2)]}-β-glucopyranoside (3*), acacetin 7-O-rutinoside, (4), rhamnocitrin 3-O-β-glucopyranoside (5), quercetin 3-O-β-glucopyranoside (6), rutin (7), rhamnetin 3-O-β-glucopyranoside (8), isorhamnetin 3-O-β-glucopyranoside (9), isorhamnetin 3-O-β-rutinoside (10), isorhamnetin 3-O-α-arabinopyranoside (11), quercetin 3-O-α-arabinopyranoside (12), (2R,3R)-dihydrokaempferol 4’-O-β-glucopyranoside (13), genistein 4’-O-β-glucopyranoside (14), uracil (15), adenosine (16),β-sitosterol (17), daucosterol (18), long-chain fatty acid ester (19).Bioacitivities of some compounds from O. racemosa were screened by various pharmaceutical models. Compound 2 showed hepatoprotective effects against D-galactosamine-induced toxicity in WB-F344 cells, with cell survival rate of 50% at 1×10-4 M; compounds 2 and 9 showed selective cytotoxicities, with IC50 values of 6.38×10-6 M against A2780 and 5.20×10-6 M against A549, respectively.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络