节点文献

引力场中的轨道效应和黑洞的量子隧穿效应

Orbital Effect in the Gravitational Field and Quantum Tunneling Effect of the Black Hole

【作者】 龚添喜

【导师】 王永久;

【作者基本信息】 湖南师范大学 , 理论物理, 2010, 博士

【摘要】 随着广义相对论引力效应不断被实验观测所验证,Einstein的广义相对论已成为公认的经典理论。同时,随着科学技术的发展,更多的引力效应被观测到和被验证。引力场中的轨道效应就是其中的一类。其极限情况光子的轨道效应(引力场中光线的偏转)更是广义相对论的四大经典实验验证之一。在第二章中,我们运用一种优美的数学方法,计算了带有电荷和整体单极子的中心质量的引力场中的轨道进动效应。通过对所得结果的分析,我们发现,由于整体对称性破缺,轨道进动效应将增强,但由场源的电荷引起的轨道进动效应削弱了由场源的质量引起的相应效应。我们推广了Schwarzschild场中的轨道效应,通过对天体参数的讨论,得到了相应天体的轨道进动效应,为广义相对论提供了一种可能的实验验证。我们还计算了带有电荷和磁荷的旋转场源外部稳态时空中光子的轨道效应。通过对所得结果的分析,我们发现电荷所引起的光子轨道偏转效应减小了由场源质量所引起的光子轨道偏转效应,但由场源的旋转所引起的相应偏转效应依赖于源的旋转方向与光子运动方向之间的夹角。我们通过对相应的天体参数的讨论得到了一系列有意义的结果。第三章介绍了黑洞基本热力学性质,并分别运用Bogoliubov法和Damour-Ruffini(D-R)方法证明了黑洞存在热辐射—Hawking辐射。第四章研究了黑洞的量子隧穿效应—将Hawking辐射看成穿过视界的隧穿过程,进行了直接的推导,得到了隧穿效率表达式。我们运用Keski-Vakkuri, Kraus and Wilczek(KKW)的分析方法计算被暗能量包围的黑洞的温度和熵,其温度和熵不同于相应的Hawking温度和Bekenstein-Hawking熵。我们得到的结果提供了一种处理信息疑难的可能机制—因为该辐射谱不再是纯热谱。最后,我们运用由Banerjee和Majhi所发展的非WKB近似的Hamiliton-Jacobi方法,计算了被暗能量包围的黑洞的温度和熵,即修正后的温度和熵。

【Abstract】 Einstein’s general relativity was known as the classical theory with more gravitational effects of the general relativity continuously proved by experimental observation facts. At the same time, more gravitational effects are observed and proved with the development of the science and the technology. The orbital effect in the gravitational field is one of them, the limiting case, the photon orbital effect the deflection of light lay in the gravitational field, which is one of the four classical experimental verifications of the general relativity.First, using an elegant mathematical method we calculate the orbital effects in the gravitational field of the centre with electric charge and a global monopole. Analyzing the results, we obtain that the orbital precession effect increases on account of the global symmetry breaking, but the orbital precession effect aroused by the electric charge of the field source reduces the orbital precession effect aroused by the mass of the field source. We generalize the effect in the Schwarzschild field, and obtain the celestial body orbital effect by discussing the parameters of it, which provides a feasible experi-mental verification of the general relativity. Then, we calculate the orbital effect of photon in the general stationary spacetime created by the spinning mass with electric charge and a large number of mag-netic monopoles. By analyzing the result we find that the deflection effect caused by the electric charge and magnetic charge decreases the deflection effect caused by the mass of the field source, but the deflection effect caused by the spinning of the field source depends on the angle between the spinning direction of the field source mass and the direction of photon motion. We obtain a series of interesting results by discussing the parameters of the celestial body.Second, we introduce the basic thermal nature of the black hole, then used the Bogoliubov method and the Damour-Ruffini(D-R) method, and proved that the black holes have thermal radiation—Hawking radiation. We study the quantum tunneling effect of the black hole, namely regarding Hawking radiation as a tunneling pro-cess across the horizon through a short and direct derivation then ob-tain the expression of the tunneling rate. We use the Keski-Vakkuri, Kraus and Wilczek(KKW) analysis to calculate the temperature and entropy of the black hole surrounded by Quintessence and obtain the temperature and entropy are different from the Hawking tempera-ture and the Bekinstein-Hawking entropy. The result we get can offer a possible mechanism to deal with the information loss paradox because the spectrum is not purely thermal.Finally, we use non-WKB approximation Hamilton-Jacobi method which was developed by Benerjee and Majhi. And calculate the tem-perature and entropy of the black hole surrounded by Quintessence, i.e. the corrected temperature and entropy.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络