节点文献

厌氧好氧除磷厌氧氨氧化脱氮城市污水再生全流程研究

Integrated Process of Anaerobic-Oxic Phosphorus Removal and Anaerobic Ammonium Oxidation Nitrogen Removal for Urban Sewage Regeneration

【作者】 王俊安

【导师】 张杰; 李冬;

【作者基本信息】 北京工业大学 , 市政工程, 2010, 博士

【摘要】 城市污水是国际公认的宝贵的城市“第二水源”,城市污水再生全流程的研发及应用,是缓解水危机、恢复或维系社会用水健康循环的重中之重。在污水生物处理过程中,为了从本质上解决除磷菌和脱氮菌之间存在的矛盾和竞争,可以将除磷和脱氮过程分别进行考虑。目前,对于生物除磷,厌氧-好氧工艺最为经济可靠;而对于生物脱氮,厌氧氧氧化工艺无疑最具有可持续发展的意义。针对厌氧/好氧生物除磷-部分亚硝化/厌氧氨氧化生物脱氮城市污水再生全流程工艺,通过对除磷反应器的运行工况进行调整,提出了污泥膨胀的解决方法,确定了其快速恢复的技术手段;通过对部分亚硝化和厌氧氨氧化反应的机理特性进行分析,确定了影响生物自养脱氮反应的主要因素,提出了低氨城市污水条件下厌氧氨氧化脱氮的主要技术手段;并将全流程工艺中的脱氮菌和聚磷菌进行耦合,探究了不同工况条件下反应器的运行效能,为全流程优化提供了基础资料。本论文研究工作的主要内容和创新点表现在以下几个方面:(1)确立了低溶解氧控制是实现城市污水部分亚硝化的主要途径对于生物滤池亚硝化系统,通过在滤池上部水中进行曝气和处理水携氧内循环联合的方式,可以实现对生物膜系统内溶解氧浓度的良好控制,并同时能起到提高处理水pH值的作用,这更有利于氨氧化细菌的富集生长。亚硝化生物滤池间歇运行条件下,“三氮”浓度的变化均符合零级动力学反应的特点,而亚氮与氨氮的比例呈二次曲线变化规律,在本试验条件下实现部分亚硝化所需要的适宜水力停留时间为9.05~13.58小时。(2)实现了常温、低氨氮城市污水厌氧氨氧化生物滤池的快速启动接种厌氧氨氧化菌的生物滤池反应器将经历厌氧氨氧化菌的驯化和快速扩增过程,其中驯化时间约为30天,快速扩增时间约为75天。以火山岩活性生物陶粒为滤料的生物膜反应器作为厌氧氨氧化菌富集与增殖的载体,在反应器启动过程中,反应器内生成气体的产量、生物滤料颜色的改变、各类氮素的转化以及pH值等的变化情况,均可作为表征厌氧氨氧化菌驯化与扩增阶段厌氧氨氧化反应特性的重要标志。(3)提出了磷酸盐对厌氧氨氧化生物滤池脱氮性能的影响机制进水磷酸盐浓度的提高对常温、低氨氮城市污水厌氧氨氧化反应存在可逆性抑制作用。当进水总磷浓度高于10mg/L时,在滤池内开始有鸟粪石晶体等沉积物形成,这些沉积物填充了厌氧氨氧化生物填料的部分孔隙,并阻滞了厌氧氨氧化反应基质的正常传递,从而造成了反应器脱氮负荷的明显下降。通过联合减少磷酸盐的投加、短期降低进水pH值和反冲洗三个途径,可在2天内将厌氧氨氧化生物滤池的脱氮负荷恢复至原来的88.8%。(4)获得了SBR同步亚硝化-厌氧氨氧化深度处理城市污水的方法在SBR悬浮污泥法同步亚硝化-厌氧氨氧化处理城市污水的过程中,根据溶解氧、氧化还原电位和pH值在反应周期中的变化规律,在控制DO≤0.30mg/L的系统运行条件时,可将DO=1mg/L作为SBR周期反应终点的标志。在较低温度条件下,厌氧氨氧化菌活性难以提高,考虑到城市污水处理工程的实际情况,相对于升高温度和增加非曝气反应时段两种途径来说,适当提高厌氧氨氧化菌的生物量密度,是提高厌氧氨氧化工艺脱氮效果的适宜途径。(5)实现了常温、低氨氮城市污水生物滤池CANON反应器的启动溶解氧控制可作为常温、低氨氮城市污水条件下,生物滤池亚硝化-厌氧氨氧化反应器启动的主要控制因子,通过在生物滤池上部水中进行曝气和处理水携氧内循环联合的方式,可以实现对生物膜系统内溶解氧浓度的良好控制。间歇式运行条件下,可通过pH值的变化来对反应周期进行实时控制。

【Abstract】 Urban sewage has been internationally recognized as valuable city’s "secondresources", while the research, development and application of the integrated processfor regeneration of municipal wastewater is very important for alleviating the watercrisis, restoring or maintaining the healthy cycle of cultural water. In biologicalwastewater treatment process, in order to solve the contradictions and competitionsessentially between the nitrogen removal bacteria and phosphorus removal bacteria,the removal of phosphorus and nitrogen can be considered separately. Currently,anaerobic-oxic process is the most economical and reliable for biological phosphorusremoval, while for biological nitrogen removal, anaerobic ammonium oxidationundoubtedly owns more significance for sustainable development.For the integrated reclamation process of municipal wastewater includinganaerobic-oxic biological phosphorus removal and shortcut nitrification-anaerobicammonium oxidation (ANAMMOX), the problem of activated sludge bulking issolved, and the reactor’s fast recovery techniques are determined through adjustingthe operation parameters of phosphorus removal reactor. Through the analysis on themechanism characteristics for the reaction of shortcut nitrification and ANAMMOX,the main effect factors for biological autotrophic denitrification reaction aredetermined, and the main technical means of ANAMMOX reaction for municipalwastewater with low ammonia are put forward. Nitrogen and phosphorus removalbacteria from the integrated process are coupled, and the reactor’s runningperformance is explored, thus providing basis information for the optimization ofintegrated process.The primary content and innovations of this research work are as follows:(1) The low dissolved oxygen control is the main way for the partialnitrosation of municipal wastewater For nitrosation system of biofilter, the DOconcentration in the biofilm system can be controlled well through the approach ofcombination of aeration in the water column of upper part of the filter and inner loopdevice carrying DO. At the same time, the pH value of treated water can be improved,which is more conductive to the enrichment and growth of ammonia-oxidizingbacteria. Under the intermittent running conditions for the notrosation biofilter, theconcentration change of NH4+-N, NO2--N and NO3--N all have the dynamics characterof zero-order reaction, while the change trend of the ratio between NO2--N andNH4+-N shows a quadratic variation. Accordingly, the suitable hydraulic retentiontime (HRT) for partial nitrosation should be controlled between 9.05 to 13.58 hoursunder the experimental conditions.(2) The fast startup of ANAMMOX biofilter for municipal wastewater withlow ammonia and room temperature is achieved The domestication and rapid expansion process of ANAMMOX bacteria should be experienced for the startup ofbiofilter reactor inoculated ANAMMOX bacteria, which includes 30 days for thedomesticated time, and 75 days for the rapid amplification time. The biofilm reactortaking bioactivity volcanic ceramic as filter media is recognized as the carrier for theenrichment and amplification of ANAMMOX bacteria. In the reactor startup process,the gas production quantity, the changes of biofilm color, the nitrogen transformationand the pH value etc., can be recognized as the important symbol for demonstratingthe characteristics of the phases of domestication and multiplication.(3) The phosphate effect mechanism for the running performance ofANAMMOX biofilter is put forward There is a reversible inhibition effect on theANAMMOX reaction for municipal wastewater with room temperature and lowammonia through increasing the phosphate concentration in the influent. When the TPconcentration is more than 10 mg/L, some crystal sediments such asMgNH4PO4·6H2O (MAP) will begin to form in the filter, which may fill the pore ofANAMMOX biofilter and block the normal delivery of ANAMMOX reactionsubstrate, thus resulting in the significant decreasing of nitrogen removal load. Thenitrogen removal load can be restored to 88.8% of the original ability in two daysthrough the union of stopping adding the phosphate, reducing the pH value inshort-term and backwashing.(4) The method of simultaneous nitrosation-ANAMMOX in SBR isestablished In the process of simultaneous nitrosation-ANAMMOX for municipalwastewater treatment in SBR suspended activated sludge reactor, for DO, 1 mg/L canbe recognized as the end sign for the SBR reaction cycle under the system runningconditions of no more than 0.3 mg/L according to the cycle variation of DO, ORP andpH. At lower temperatures, the activity of anammox bacteria is difficult to be raised.Given the actual situation of urban sewage treatment works, the appropriateincreasing of the biomass density for ANAMMOX bacteria is a feasible approach forimproving the effect of nitrogen removal by ANAMMOX process compared to thetwo ways of raising temperature and adding non-aeration term.(5) The startup of CANON biofilter is realized under the conditions ofmunicipal wastewater with low ammonia and room temperature Controlling DOcan be recognized as the main control factor for the biofileter’s startup ofnitrosation-ANAMMOX for urban wastewater in the conditions of room temperatureand low ammonia nitrogen. The DO concentration in the biofilm system can becontrolled well through the union approach of aeration in the upper water of biofilterand the inner loop device carrying DO in the treated water. In intermittent operatingconditions, the whole reaction cycle can be real-time controlled according to thechanges of pH value.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络