节点文献

面向精密仪器设备的主动隔振关键技术研究

Study on Active Vibration Isolative Techniques for Precise Instruments

【作者】 李国平

【导师】 陈子辰; 魏燕定;

【作者基本信息】 浙江大学 , 机械制造及其自动化, 2010, 博士

【摘要】 本学位论文结合浙江省自然科学基金项目“精密设备系统主动隔振基础理论研究”(No.599085)进行精密仪器设备隔振平台振动主动控制理论与实验研究。针对项目的研究任务和国内外研究现状,采用理论研究、计算机仿真与实验研究相结合的研究方法,完成了精密仪器设备主动隔振系统的动力学分析,研制了用于该隔振系统的超磁致伸缩驱动器,对该隔振系统中的功率流传递特性进行了研究分析,然后采用免疫控制方法完成了精密仪器主动隔振系统的隔振器设计,搭建了主动隔振系统的模拟实验台,并进行了相关实验研究。第一章,阐述了本学位论文的研究背景与意义,分析了国内外主动隔振技术在隔振方案设计、驱动器与传感器、功率流传递特性和控制策略等方面的研究现状,提出了本论文的主要研究内容。第二章,以电镜类光学仪器为研究对象,建立了平台隔振形式的多自由度隔振系统的动力学模型。在研究典型一级主动、被动隔振系统的振动位移传递率的基础上,针对常用的二级主动隔振模型,考虑以不同参数作为反馈控制变量时,分析隔振系统在单坐标方向上的振动加速度传递率。第三章,在分析超磁致伸缩材料工作特性的基础上,研制了用于精密仪器主动隔振系统的超磁致伸缩驱动器,对超磁致伸缩驱动器的力和位移输出的静态特性和动态特性进行实验测试与分析,并建立了基于磁机耦合原理的驱动器磁滞非线性模型。第四章,建立了精密仪器主被动隔振平台系统的功率流传递模型,对于采用超磁致伸缩驱动器的隔振平台-基础主动隔振系统,采用四端参数法推导出隔振系统的功率流传递函数,对该函数进行数值仿真计算,详细分析了各控制器反馈参量对系统功率流传递特性的影响。第五章,根据人工免疫系统的思想设计出免疫反馈控制器,并将该控制器用于精密仪器的主动隔振系统中。针对精密仪器隔振平台的控制模型,在MATLAB环境中进行了对所设计的主动隔振系统的控制系统的抗干扰能力和时域性能等方面进行了研究。第六章,研制了以工业PC机为核心的精密仪器模拟隔振平台实验系统,完成了相应的软硬件系统开发,并对隔振实验台分别进行被动隔振、主被动复合隔振的实验研究。第七章,对论文的主要研究工作和创新点作了总结,并对未来的研究工作进行了展望。

【Abstract】 This dissertation reports a theoretical and experimental study on the active vibration control of a precision vibration-isolation platform. It is supported by a project funded by the Natural Science Foundation of Zhejiang Province, China, titled "Research on Supporting Technology of Active Vibration Isolation for Precision Equipment Systems" (Grant No. 599085). Based on the state-of-the-art research both in China and abroad, the dissertation adopts the approach of applying theoretical analysis, computer simulation and actual experiments; With such an appoach, an active vibration-isolation strategy for precision instruments was proposed, a giant magnetostrictive actuator for the vibration-isolation system was developed, the transmission characteristics of the power flow in the system was analyzed, and finally, the active vibration-isolation comtrol system for precision instruments was established by adopting an immune control method, A test rig of the vibration-isolation system was developed, which was used to carry out some relevant experimental studies.In Chapter One, the background and significance of the research are introduced, and the state-of-the-art research of active vibration isolation both in China and abroad is expounded, including the vibration-isolation strategy, actuators and sensors, transmission characteristics of power flow, control strategy, etc. The aspects of research covered by this dissertation are also elaborated.Chapter Two takes the electronic microscopes (a kind of optical instruments) as the study cases. The dynamic model of the multi-DOF vibration-isolation system in the form of platform vibration isolation is created. The vibration displacement transmissibility of typical one-stage active vibration isolation system and passive vibration isolation system are analyzed. Then the vibration acceleration transmissibility of the vibration isolation system in one direction is discussed for the commonly used two-stage active vibration isolation model, by assigning different parameters to the feedback control variables.Chapter Three first analyzes the characteristics of giant magnetostrictive material. After that, a giant magnetostritive actuator used in the active vibration control for precision instruments is developed. The static state and dynamic output characteristics of force and displacement of the giant magnetostrictive actuator are measured and analyzed, and the nonlinear hysteresis model of the giant magnetostrictive actuator is also established.In Chapter Four, a vibration-isolation model of active and passive vibration-isolation system for the precision instruments are established. For the active vibration-isolation system that adopts magnetostrictive actuators, the power flow transmission function is derived using a four-port parameter method. Numerical simulation and analysis is carried out based on the transmission function, and the influences of different controller feedback parameters on power flow transmission characteristics of the system are discussed in details.Chapter Five combines the two-stage vibration-isolation model and the idea of artificial immune system to develop an immune feedback controller for the active vibration isolation of precision instruments. Extensive simulation study is done in the MATLAB environment, and the anti-disturbing capabilities and time-domain performances of the developed controller are studied.In Chapter Six, a test rig of vibration-isolation experimental system for precision instruments, based on an industrial personal computer, is developed, including both its hardware and software system. By utilizing this test rig, some experiments on passive isolation, and those on the combined active and passive isolation are carried out.Chapter Seven concludes the dissertation by summarizing the main findings of the research as well as the further research prospects.

  • 【网络出版投稿人】 浙江大学
  • 【网络出版年期】2010年 08期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络