节点文献

短距离场地自行车运动员平衡能力的研究

The Difference of Balance Abilities between Sub-elite and Elite Sprint-trained Track Cyclists

【作者】 邹荣琪

【导师】 李国平;

【作者基本信息】 上海体育学院 , 运动人体科学, 2008, 博士

【摘要】 研究目的:本研究从肌肉力量、本体感觉、前庭感觉和中枢神经系统等四个方面探讨影响短距离场地自行车运动员平衡能力的生理学因素,为提高场地自行车运动员的竞技能力提供理论参考和应用依据。研究对象:实验对象分三组、共25人,其中正常对照组10人、二级短距离场地自行车运动员8人、健将级短距离场地自行车运动员7人。正常对照组、二级短距离场地自行车运动员组与健将级短距离场地自行车运动员组的年龄比较具有显著性差异(分别为:20.6±0.8岁,19.8±1.0岁,25.4±2.6岁,P<0.05)。二级运动员组和健将级运动员组平均训练年限也具有显著性差异(分别为:4.5±1.7年,9.9±1.8年, P<0.05)。三组在身高和体重方面相匹配。所有受试者均无眼科疾患、视力均大于或等于5.0、否认神经系统和骨科等疾病并同意参与此次测试。研究方法:1、动态平衡和前庭功能测试:用BIODEX动态平衡系统测试睁眼、闭眼难度系数从7开始到7结束30秒时三个组的动态平衡指数,同时运用肌电图仪测试右下肢腓肠肌和胫骨前肌的肌电,观察iEMG和MF的变化。2、肌肉力量测试:用BIODEXⅢAP多关节等速测试训练装置对三组实验对象的踝关节屈伸、膝关节屈伸和躯干屈伸肌进行等速向心收缩60°/s×5测试。3、本体感觉测试:BIODEX本体感觉软件系统设置右膝关节开始位置为90°,结束位置为45°,角速度180°/s。测试时,测试者伸膝关节感觉处在45°位时停止,共重复3次。4、中枢神经系统测试(脑电测试):测试对象均为右利手,实验前要求对运动员组进行表象训练,先3分钟安静闭目,接着表象自己近年来1公里场地计时赛最好成绩的那场比赛,表象时间1分40秒,然后3分钟恢复,这个过程为一个周期,每天重复练习此过程30分钟,1次/天,共训练2周,实验时按此程序用Bio-logic数字化脑电系列便携机进行脑电测试。研究结果:1、动态平衡指数与前庭功能、肌肉力量和本体感觉密切相关。2、动态平衡能力睁眼和闭眼状态下,动态平衡的指数两运动员组均显著低于正常对照组(P<0.01),健将级运动员组低于二级运动员组(P<0.05)。3、前庭功能睁眼状态下:胫前肌肌电变化比较,二级运动员组与正常对照组积分肌电iEMG和中位频率MF都不具有显著性差异(P>0.05),健将级运动员组与正常对照组比较,iEMG和MF都具有显著性差异(P<0.05);健将级运动员组与二级运动员组相比,iEMG和MF都不具有显著性差异(P>0.05)。腓肠肌肌电变化比较,二级运动员组、健将级运动员组和正常对照组之间相互比较,iEMG和MF都不具有显著性差异(P>0.05)。闭眼状态下:胫前肌肌电变化比较,二级运动员组、健将级运动员组与正常对照组之间相互比较,iEMG和MF都具有显著性差异(P<0.05)。腓肠肌肌电变化比较,二级运动员组与正常对照组积分肌电iEMG有非常显著性差异(P<0.01),MF不具有显著性差异(P>0.05);健将级运动员组与正常对照组比较,iEMG和MF都具有显著性差异(P<0.05);两运动员组之间比较,iEMG具有非常显著性差异(P<0.01),MF不具有显著性差异(P>0.05)。4、肌肉力量踝关节、膝关节和躯干部肌肌肉力量:二级和健将级短距离场地自行车运动员反映关节伸、屈肌肌肉力量的指标和正常对照组比较,具有显著性差异(P<0.05),但两运动员组之间比较,无显著性差异(P>0.05)。5、本体感觉健将级运动员组、二级运动员组分别与正常对照组比较,膝关节的本体感觉都具有非常显著性差异(P<0.01);健将级运动员组与二级运动员组相比,本体感觉具有显著性差异(P<0.05)。6、中枢神经系统1)安静时,二级短距离场地自行车运动员组EEG的FP1相对FP2、F3相对F4、C3相对C4、P3相对P4、F7相对F8、T3相对T4、T5相对T6、O1相对O2总功率无显著性差异(P>0.05),健将级短距离场地自行车运动员组EEG各对应脑区也无显著性差异(P>0.05);健将级运动员组和二级运动员组EEG的左侧各对应脑区相比总功率无显著性差异(P>0.05),右侧对应各区总功率也无显著性差异(P>0.05)。2)表象时,二级运动员EEG的FP1相对FP2、P3相对P4、O1相对O2总功率有显著性差异(P<0.05),F3相对F4、C3相对C4、F7相对F8、T3相对T4、T5相对T6总功率无显著性差异(P>0.05);健将级运动员EEG的左侧各个区和右侧对应各区相比总功率无显著性差异(P>0.05);健将级运动员和二级运动员的FP1、P3、P4、O1、O2总功率相比具有显著性差异或非常显著性差异(P<0.05或P<0.01),其余各区总功率无显著性差异(P>0.05)。表象与安静状态下比较,二级运动员P3相对O1、P4相对O2α指数相对指标都不具有显著性差异(P>0.05);健将级运动员P3相对O1、P4相对O2α指数相对指标均具有显著性差异(P<0.05)。3)安静时,健将级运动员和二级运动员顶区脑电活力比值比较无显著性差异(P>0.05),枕区也不具有显著性差异;表象时,两区脑电活力比值均有显著性差异(P<0.05)。研究结论:1、人体的平衡能力与踝伸和屈肌、膝关节伸肌及躯干肌肉力量、本体感觉、前庭感觉和中枢神经系统显著相关。2、正常对照组、二级和健将级短距离场地自行车运动员的平衡能力均有显著性差异,其平衡能力顺序为健将级运动员>二级运动员>正常对照组。3、踝、膝关节伸和屈及躯干肌力肌肉力量是造成正常对照组和短距离场地自行车运动员平衡能力差异的主要因素之一,但不是造成二级和健将级短距离场地自行车运动员平衡能力差异的主要因素。4、健将级短距离场地自行车运动员本体感觉与正常对照组、二级短距离场地自行车运动员相比具有显著性差异,主要是由于长期的训练导致本体感受器的感觉阈降低及突触的敏感化造成的。5、短距离场地自行车运动员的前庭功能与正常对照组比具有显著性差异,表明长期短距离场地自行车训练能够改善人体的前庭功能。健将级短距离场地自行车运动员和二级运动员的前庭功能差异是由于训练年限和不同的训练内容造成的。6、健将级短距离场地自行车运动员中枢神经系统对外界输入信息的整合及动作的协调优于二级运动员,是引起两组运动员平衡能力差异的主要因素。

【Abstract】 Objective:The aim of this study was to explore the effects of muscle strength, proprioception, vestibular function and central nervous system on the sprint-trained track cyclists’balance, so as to provide theoretical and applying basis for making great achievement for cyclists.Subjects:The subjects were divided into 3 groups,amounted to 25 persons, the control group had 10 persons,the sub-elite sprint- trained track cyclists had 8 persons and the elite sprint-trained track cyclists had 7 persons.The average age for the control group(20.6±0.8 years)and the sub-elite cyclists(19.8±1.0years) in comparison with the elite sprint-trained track cyclists(25.4±2.6years)showed marked difference (P<0.05).The training time for the sub-elite cyclists(4.5±1.7years) in comparison with the elite cyclists(9.9±1.8years) showed marked difference (P<0.05) too. Heigh and weight among the three groups had no significant difference (P>0.05).All subjects were volunteer for the test and had no eyes diseases, nerve system disease and orthopaedics disease,all subjects eyesight were equal and superior to 5.0.Methods:1 Dynamic balance and vestibular function test: Biodex dynamic balance system was used to acquire balance index with eyes opened and closed for 30 seconds, the difficulty coefficient of dynamic balance test was from 7 to 7,simultaneously tested Elcetromyogram (EMG) of right tibialis anterior and gastrocnemius and observed iEMG and MF changes.2 Muscle strength test:BiodexⅢAP isokinetic system(con/con 60°/s×5)was used to test dorsiflexion and plantar flexion muscle strength in the ankle joint, flexor and extensor muscle strength in the knee joint and in the trunk for three groups.3、Proprioception test:BiodexⅢAP isokinetic system was used to test proprioception of the knee joint which range was from 90°to 45°(deg 180°/s) for three groups.4、Central nervous system test: The cyclists’right hands were predominant, they were required to keep quiet and eyes closed for 3 minutes before test, followed to recall 1 kilometer in track cycling which they had won the best event in recent years for one minutes and four seconds, and at last recovered for 3 minutes, the training time added up to 2 weeks, 30 minutes per training,once per day.Bio-logic was used to test cyclists’central nervous system,following above the procedure.Results:1 Dynamic balance abilities were correlation with muscle strength and proprioception and vestibular function2 Dynamic balance abilities and vestibular function 1) Dynamic balance abilities With Eyes opened and closed, dynamic balance index of the sub-elite cyclists and the elite cyclists in comparison with the control group were significant difference(P<0.01).Dynamic balance index of the elite cyclists were lower than the sub-elite cyclists(P<0.05).2) Vestibular functionWith eyes opened,there were no significant difference in integration electromyography(iEMG) and median frequence(MF) of tibialis anterior between the sub-elite cyclists and the control group(P>0.05).iEMG and MF showed significant differ- ence between the elite cyclists and the control group (P<0.05).iEMG and MF of tibialis anterior showed no significant difference between the elite cyclists and the sub-elite cyclists either(P>0.05).But iEMG and MF of gastrocnemius showed no significant difference among the elite cyclists and the sub-elite cyclists and the control group (P>0.05).With eyes closed,iEMG and MF of tibialis anterior showed significant difference among the elite cyclists and the sub-elite cyclists and the control group(P<0.05).iEMG of gastrocnemius showed significant difference(P<0.01)between the sub-elite cyclists and the control group,but MF of gastrocnemius didn’t (P>0.05),however iEMG and MF of gastrocnemius all showed signify cant difference between the elite cyclists and the control group(P<0.05 or P<0.01).iEMG of gastrocnemius showed significant difference(P<0.01) between the elite cyclists and the sub-elite cyclists,but MF of gastrocnemius didn’t(P>0.05).3 Muscle strengthMuscle strength in the ankle and knee and trunk:The sub-elite cyclists and the elite cyclists in comparison with the control group had significant difference( P<0.05) .There was no significant difference between the sub-elite and the elite cyclists(P>0.05).4 ProprioceptionThe sub-elite cyclists and the elite cyclists in comparison with the control group differed significantly in proprioception of the knee (P<0.01).There was significant difference in proprioception of the knee joint between the sub-elite cyclists and the elite cyclists(P>0.05).5 Central nervous system1)During quiet,the absolute power of FP1 vs FP2,F3 vs F4,C3 vs C4 P3 vs P4,F7 vs F8,T3 vs T4,T5 vs T6,O1 vs O2 in the sub-elite cyclists showed no difference(P>0.05)and the absolute power of FP1 vs FP2、F3 vs F4,C3 vs C4,P3 vs P4,F7 vs F8,T3 vs T4,T5 vs T6,O1 vs O2 in the elite cyclists either(P>0.05).The absolute power of the right brain showed no difference (P>0.05)between the sub-elite cyclists and the elite cyclists,the absolute power of the left brain either(P>0.05).2)During recalling,the absolute power of FP1 vs FP2,P3 vs P4,O1 vs O2 in the sub-elite cyclists showed significant difference (P>0.05)and the rest didn’t(P>0.05),but the absolute power of FP1 vs FP2,F3 vs F4,C3 vs C4,P3 vs P4,F7 vs F8,T3 vs T4,T5 vs T6,O1 vs O2 in the elite cyclists showed no difference(P>0.05).The absolute power of FP1,P3,P4,O1 and O2 between the sub-elite cyclists and the elite cyclists showed significant differentce (P<0.01 or P<0.05)and the rest didn’t(P>0.05).P3 vs O1,P4 vs O2αindex of EEG in the sub-elite cyclists showed no difference between quiet and recalling,but P3 vs O1,P4 vs O2αindex in the elite cyclists showed significant difference(P<0.01). 3) During quiet,activation coefficient of parietalis cortex and occipitalis between the sub-elite cyclists and the elite cyclists showed no difference (P>0.05).But during recalling, activation coefficient in parietalis cortex and occipitalis between the sub-elite cyclists and the elite cyclists showed difference (P<0.05).Conclusions:1 Balance abilities were marked correlation with dorsiflexion and plantar flexion muscle strength in the ankle,extensor muscle strength in the knee, flexor and extensor muscle strength in the trunk, proprioception, vestibular function and the central nervous system.2 Balance among the control group and the sub-elite sprint-trained track cyclists and the elite sprint- trained track cyclists showed significant difference, the elite cyclists > the sub-elite cyclists > the control group.3 Muscle strength in the ankle, knee and trunk was one of the reasons that caused balance difference between the control group and the sprint-trained track cyclists, but muscle strength was not major reason that caused balance difference between the sub-elite sprint-trained track cyclists and the elite sprint-trained track cyclists.4 The reasons those caused significant difference among the elite cyclists proprioception,the sub-elite cyclist -s proprioception and the control group proprioception were proprioceptor threshold decrease and synaptic sensitization.5 The vestibular function showed significant difference between the sprint-trained track cyclists and the control group(P<0.01 or P<0.05),it suggested that track sprint-trained could improve the vestibular function. The significant difference in vestibular function between the elite sprint-trained track cyclists and the sub-elite sprint-trained track cyclists were caused by training time and content.6 Central nervous system function was one of the reasons that caused the difference of balance abilities between sub-elite and elite sprint-trained track cyclists.

  • 【分类号】G872.3
  • 【下载频次】387
节点文献中: 

本文链接的文献网络图示:

本文的引文网络