节点文献

电磁双功能前驱体—四硫代富瓦烯衍生物的合成及其配合物的制备和表征

Synthesis of TTF Derivatives as Dual-Functional Precursors, Preparation and Characterization of Their Metal Complexes

【作者】 王宇

【导师】 张景萍;

【作者基本信息】 东北师范大学 , 物理化学, 2009, 博士

【摘要】 对于电磁双功能材料的研究是目前合成与材料化学领域的研究热点,该领域最初的起源要追溯到对于四硫代富瓦烯(TTF)的研究。从发现第一个有机金属(TTF)(TCNQ)以来,TTF的衍生物已经不仅仅可以作为有机导体的构筑模块,同时也在分子机器、有机磁体、有机场效应晶体管、太阳能电池和非线性光学材料等方面得到广泛应用,其中最活跃的研究要属合成多功能分子基材料。设计一个同时具有导电性和磁性的分子(材料)特别吸引了很多化学和物理学家的兴趣。实现这一目标的方法就是在有机供体π电子和定域的顺磁离子d电子间建立耦合π-d相互作用,而实现π-d相互作用通常可以采用两种方法:(a)通过空间的相互作用来实现π-d相互作用,但此类相互作用会比较弱;(b)使两个体系通过化学键相连,从而有效地实现π-d相互作用。为了设计具有强π-d相互作用的双功能材料,我们成功地合成了四种带有配位基团的新颖TTF衍生物。并利用1-(4-(tetrathiafulvaleneyl)phenyl)ethanone (TTF-PEO)和1-(4-tetrathiafulvalyphenyl)-4,4,4-trifluorobutane-1,3-dione (TTF-ph-tfacH)分别制备出溶剂依赖的CuBr42?电荷转移盐和金属MII(M = Zn, Co)配合物。这将为新型分子基电磁一体化材料提供理论和实验基础。研究工作主要包括以下四部分内容:1、合成出作为电磁一体化材料前躯体的四中新颖的TTF衍生物,并且通过质谱、红外、紫外和核磁进行结构表征。其中N-(tetrathiafulvalen-4-ylmethylene)-1,2,4-triazol-4-amine (1) , 4′-tetrathiafulvaleneyl- 2,2′:6′,2″-terpyridine (2) , 1-(4-(tetrathiafulvaleneyl)phenyl)ethanone (TTF-PEO) (3)和1-(4-tetrathiafulvalyphenyl)-4,4,4-trifluorobutane-1,3-dione (TTF-ph-tfacH) (4)分别带有单取代的三氮唑、三联吡啶、苯乙酮和β-二酮配位基团。这四种化合物的循环伏安测试成功地将TTF分步氧化为阳离子自由基和双阳离子,显示出可逆的单电子氧化过程。它们的电化学行为与母体TTF相似,因此它们应该可以作为优良的供体材料得到广泛的应用。同时每种化合物均为单取代的非对称分子,因此该类化合物在非线性光学材料领域可能有潜在的应用。2、通过改变溶剂的方法方便地实现了调节TTF-PEO的电荷转移量为+1和+2,分别合成出化合物(TTF-PEO)2CuBr4 (5)和(TTF-PEO)2(CuBr42·CH2Cl2·CH3CN (6),晶体结构分析表明它们分别属于三斜的Pī和正交的Pbca空间群。含有单取代基的TTF-PEO有利于有效地缩短有机供体与顺磁离子间的距离,这一点体现在5中具有最短的Br···S距离,预示着在TTF-PEO+·电子供体和CuII离子间通过Br···S···Br···S超交换作用可能存在强的π-d相互作用。具有反铁磁行为的化合物5在110-120K观察到了相转变的发生,是目前已报道的该类化合物中最高的相变温度。3、TTF-ph-tfac烯醇阴离子具有很强的配位能力,与金属氯化物(Zn和Co)螯合配位分别生成了配合物Zn(TTF-ph-tfac)2(CH3OH)2 (7)和Co(TTF-ph-tfac)2(CH3OH)2 (8),每个中心金属都桥连两个TTF-ph-tfac配体。电化学行为的测试预示着该体系可以作为电磁双功能材料的前躯体。8的磁性测试显示中心金属间是弱的反铁磁相互作。4、合成并通过单晶X-射线衍射表征了四个新颖的铜化合物,一维链化合物{[Cu(terpyOH)(phth)]·H2O}n (9),双核化合物[Cu2(terpyO)2(phth)(H2O)2]·11H2O (10),单核化合物[Cu(terpyOH)(SO4)(H2O)]·2H2O (11) and [Cu(terpyOH)2]·(HBTC)·2H2O (12) (terpyOH = 4′-羟基-2,2′:6′,2″-三联吡啶, phth =邻苯二甲酸,BTC =均苯三酸)。在9中,邻苯二甲酸阴离子桥连CuII中心形成了一个无限的Z型链。在10中存在的(H2O)16和(H2O)10水簇形成了一个2D含水层。一个通过氢键形成的近乎平面的S型和Z型水链分别在11和12的晶体结构中观察到。在12中,Cu(II)中心是六配位的,这与五配位的化合物9,10和11是不同的。并且在合成化合物11的过程中,发现在水热条件下4′-溴代-2,2′:6′,2″-三联吡啶发生原位反应生成terpyOH分子。通过对比这些化合物的晶体结构可以发现,当用terpyOH分子通过氢键作用构筑水分子簇的时候,控制体系的pH值使其脱去质子将是非常有利的。

【Abstract】 The origins of dual-property materials of research date back to the molecule tetrathiafulvalene (TTF). Since the discovery of the first organic metal (TTF)(TCNQ), TTF derivatives have been used not only as building blocks of organic conductors, but also as components of molecular machines, organic magnets, organic field-effect transistors (OFET), electrochemical sensors, solar cells, and nonlinear optical (NLO) materials for second-harmonic generation (SHG) applications. Intense investigations are devoted to multifunctional molecular materials. In particular, chemists and physicists are attracted to the design of new molecules and materials that possess synergy or interplay between electrical conductivity with magnetism. The objective of this combination is to establish a coupling between conduction electrons (πelectrons) coming from organic donors and localized electrons (d electrons) coming from paramagnetic centers, through the so-calledπ-d interaction. To fill this goal, two approaches are investigated: (a) a through-space approach but withπ-d interactions that are usually very weak; (b) a covalent link between both systems.Dual-functional materials are of great interest in the area of materials chemistry. In order to design dual-functional materials, four TTF derivatives as the new precursors for the construction of conducting and magnetic materials have been synthesized. Using the 1-(4-(tetrathiafulvaleneyl)phenyl)ethanone (TTF-PEO) and 1-(4-tetrathiafulvalyphenyl)-4,4,4-trifluorobutane-1,3-dione (TTF-ph-tfacH), the preparation of solvent dependent CuBr42? charge-transfer salts and the Zinc(II) coordination complex has also been reported, respectively, which can be regarded as an example of the two methods referred above. This report may provide a promising strategy for the design and exploitation of new magnetic compounds for useful applications. The main contents in this thesis can be summarized as follows:1. Four TTF derivatives as the new precursors for the construction of conducting and magnetic materials have been synthesized and chatacterized by NMR and MS, N-(tetrathiafulvalen-4-ylmethylene)-1,2,4-triazol-4-amine (1), 4′-tetrathiafulvaleneyl- 2,2′:6′,2″-terpyridine (2), 1-(4-(tetrathiafulvaleneyl)phenyl)ethanone (TTF-PEO) (3), 1-(4-tetrathiafulvalyphenyl)-4,4,4-trifluorobutane-1,3-dione (TTF-ph-tfacH) (4) with monosubstituted terpyridine heterocycle, triazol heterocycle, acetophenone and acetylacetonate substituents. The cyclic voltammetric analysis of all the compounds 1, 2, 3, and 4 display the two reversible one-electron oxidation waves expected to convert successively the TTF unit into the radical cation and then into the dication. Their electrochemical behaviors are similar to that of TTF, so they should be good donors for conducting materials. They are novel monosubstituted asymmetric TTF-π-A donor molecules with TTF cores, which should be good donors for molecular conductors or OFET potential application.2. The tuning of the charge-transfer of TTF-PEO by solvent was realized forming the mono- and dication complexes (TTF-PEO)2CuBr4 (5) and (TTF-PEO)2(CuBr42·CH2Cl2·CH3CN (6) in the triclinic Pīand the orthorhombic Pbca space group, respectively. These shortest Br···S contacts in 5 might make theπ-d interaction between TTF-PEO+·electron-donors and CuII ions possible via Br···S···Br···S super-exchange paths. The antiferromagnetic behavior for monocation radical TTF-PEO+? salt with CuBr42? displayed the obvious phase transition at 110-120 K, which is the highest phase transition temperature for a charge-transfer salt with a uniformly monocharged TTF derivative.3. The chelating ability of its enolate anion (TTF-ph-tfac) has been investigated with [MIICl2·xH2O] (M = Zn and Co) leading to complexes Zn(TTF-ph-tfac)2(CH3OH)2 (7) and Co(TTF-ph-tfac)2(CH3OH)2 (8), where the metal center is coordinated by two TTF-ph-tfac ligands. This redox active ligand shows promising features for the elaboration of hybrid organic-inorganic building blocks. The magnetic measurement for 8 revealed a nearly perfect paramagnetic system with very weak antiferromagnetic interactions between the centers, which is a precursor for both conducting and magnetic materials.4. Four new copper complexes, the one dimensional (1D) chain complex {[Cu(terpyOH) (phth)]·H2O}n (9), the binuclear complex [Cu2(terpyO)2(phth)(H2O)2]·11H2O (10), mononuclear complexes [Cu(terpyOH)(SO4)(H2O)]·2H2O (11) and [Cu(terpyOH)2]·(HBTC)·2H2O (12) (terpyOH = 4′-hydroxy-2,2′:6′,2″-terpyridine, phth = phthalate, BTC = 1,3,5-benzene tricarboxylate) have been prepared and characterized by the single crystal X-ray diffraction analysis. In complexes 9, the CuII ions are bridged by phthalate dianions to form infinite Z-shaped chains with terpyOH pendants possessing penta-coordinated distorted square pyramidal geometries. Coexistence of (H2O)16 and (H2O)10 water clusters in the complex 10 leads to a novel two dimensional (2D) water sheet. A near-planar S-shape water chain and a zigzag water chain assembled by hydrogen bonds are formed for 11 and 12, respectively. The Cu(II) center in 12 is hexacoordinated, which is quite different from square-pyramidal geometries of complexes 9, 10, and 11. It is interesting to note that 4′-bromo-2,2′:6′,2″-terpyridine was converted into terpyOH in situ under hydrothermal conditions for complex 11. Hence, as discussed above, taking advantage of the terpyOH molecule constructing water cluster, we should adjust the pH to make the terpyOH deprotonated.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络