节点文献

降值设计理论

Decrease-Radix Design Principle

【作者】 严军勇

【导师】 金翊;

【作者基本信息】 上海大学 , 计算机应用技术, 2009, 博士

【摘要】 三值光计算机是一种全新概念的光电混合型计算机,它将光强度与偏振方向结合起来表示三值信息,具有光运算、光传送、电控制和光电混合存储等特点。三值光计算机理论正在逐步完善并走向实践。三值光计算机研究者们一直致力于三值光计算机样机的研制,希望这种具有众多数据位的计算机早日带给我们新的计算技术。三值逻辑光学运算器是三值光计算机的心脏部件,它的设计与实现是三值光计算机样机研制成功的关键,其性能与硬件规模都是三值光计算机样机的主要衡量指标,并对未来三值光计算机的硬件结构形式和应用影响深远。作者在研究三值逻辑光学运算器的工作中发现了多值逻辑运算器的降值设计规律;并由此建立了多值逻辑运算器的降值设计理论、设立了降值设计规范;依据这个规范,n值逻辑的nn×n种运算器都可以循着程式化的步骤,从n×n×(n-1)种最简单的基本运算单元中组合几个而成。作者运用这个规范成功地设计了三值逻辑光学运算器的结构,取得满意结果。随后,作者进一步推证出了三值逻辑光学运算器设计的公式化简法和合并图化简法。主要贡献有:1.建立了多值逻辑运算器设计的降值设计理论与降值设计规范。该理论建立在D状态、迭合操作、分解定理以及处理基元等基础上,是一种全新的运算器设计与实现方法,按此设计的运算器易于物理实现。2.建立了三值逻辑光学运算器的通用降值设计规范,并提出了一种易于集成和实现的光学硬件典型结构。这是将降值设计理论与降值设计规范应用到三值逻辑光学运算器研究上得到的成果,这项成果为这种运算器的重构性奠定了基础。3.建立了三值逻辑光学运算器的公式化简法和合并图化简法。依据这两种方法可以对三值逻辑光学运算器做最优化改善。4.实现了一个重构型三值逻辑光学运算器的实验系统,完成了相关的软硬件设计。该实验系统可以构造出全部19683种二元三值逻辑光学运算器。它显示了这种运算器的可重构性和降值设计理论的正确性。除此之外,作者还对经典逻辑代数理论中的部分定律和定理做出了降值设计理论的新解释,初步揭示了两种理论的内在关联;同时初步探讨了降值设计理论与多值逻辑理论的联系。

【Abstract】 Ternary Optical Computer (TOC) is a new type of optoelectronic hybrid computer. Using the intensity and polarizations of light to express ternary information, TOC is of the characteristics of light processing, light transmission, electric control, optoelectronic hybrid memory, et al. The theory of TOC is being improved gradually and stepped into practice. The researchers have committed themselves to the manufacture of TOC prototype at all times, and hope that the new type of computers with numerous data bits can provide us with new computing technology as soon as possible.The Ternary Logic Optical Calculator (TLOC) is the core of TOC, so its designation and realization are the keys for the successful manufacture of TOC prototype. The property and hardware scale of TLOC are the main indexes to TOC prototype, and can deeply influence the hardware architecture and application of the future TOC. In the study of TLOC, the author found the Decrease-Radix Design (DRD) rule applying to the design of Multi-Valued Logic Calculator (MVLC), and founded the DRD principle and corresponding DRD criterion of MVLC. With the DRD criterion, any n-valued logic calculator (nn×n in total) can be constructed by combining n×n×(n-1) simple basic operation units according to procedural steps. Next, the author designed the architecture of TLOC based on the DRD criterion, and obtained the satisfied results. Subsequently, two simplification methods, formula simplification and union map simplification, are deduced for the optimization of design of TLOC. The main results and achievements can be summarized as follows:Firstly, the DRD principle and DRD criterion, which are used to design the MVLC, are established. Based on physical state D, Diehe (pronounce in Chinese) manipulation, Decomposition Theorems and operation unit, et al., the DRD principle is a fire-new method that is used to design and realize logic calculator. The architecture of logic calculator designed by DRD is easy to be realized physically.Secondly, general DRD criterion of TLOC is set up, and a typical architecture of optical hardware, which is easy for integration and realization, is proposed. This is the achievement of the design of TLOC by applying the DRD principle and criterion, and it establishes the foundation on the reconfigurablity of the calculator architecture.Thirdly, formula simplification and union map simplification are founded. Based on the two simplifications, the optimization of design of TLOC can be realized. Lastly, a reconstruction experimental system of TLOC is established, and corresponding software and hardware are developed. The entire TLOCs with two inputs, 19683 types, can be reconstructed from the experimental system; this reveals the reconfigurablity of TLOC and the validity of DRD principle.In addition, part of law and theorem in classical theory of logical algebra are given a new physical implications in DRD principle, this preliminarily reveals the essential relevancy of the two theories. Meanwhile, the relevancy of DRD principle and multi-valued logical theory is also discussed preliminarily in this paper.

  • 【网络出版投稿人】 上海大学
  • 【网络出版年期】2010年 05期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络