节点文献

原位生长掺杂TiO2薄膜电极及其光电转换性能研究

In Situ Growth of Doping TiO2 Thin Film Electrod and Photoelectric Performance

【作者】 王松

【导师】 姜兆华; 吴晓宏;

【作者基本信息】 哈尔滨工业大学 , 化学工程与技术, 2008, 博士

【摘要】 TiO2薄膜电极是染料敏化太阳能电池的重要组成部分。制备工艺简便,成本低廉,与基体结合牢固的TiO2薄膜电极有利于推动染料敏化太阳能电池的实际应用进程。本论文采用微等离子体氧化法在钛表面原位生长与基体结合力好和大面积的TiO2薄膜电极。研究了电解液体系、电流密度、电压、电解质浓度、反应时间和敏化工艺对的TiO2薄膜光电性能的影响。通过优化工艺参数实现了TiO2薄膜电极的原位生长。以(NH4)2SO4为电解液体系,当电流密度为14A/dm2、电压为245V、电解质浓度为0.5mol/L、反应时间为10min,敏化温度为25℃,染料浓度为0.2mmol/L时,所得TiO2薄膜电极的光电性能较好,开路电压、短路电流、填充因子和光电转换效率分别为652mV、149μA/cm2、0.39和0.095%。研究了N、S和Nd单独掺杂及N与Nd复合掺杂对原位生长TiO2薄膜电极光电性能的影响。结果表明,N、S、Nd单独掺杂和N与Nd复合掺杂均可显著提高原位生长TiO2薄膜电极光电性能,其中单独掺杂TiO2薄膜电极的光电性能优于复合掺杂,N掺杂TiO2薄膜电极的光电性能最好,开路电压、短路电流、填充因子和光电转换效率分别达到了701mV、165μA/cm2、0.42和0.121%。利用SEM、XRD、XPS、UV-vis DRS和EIS等分析手段,对掺杂前后所得TiO2薄膜电极表面形貌、晶胞参数、晶粒大小、吸收光谱及内部阻抗进行了分析。研究结果表明,所得薄膜是由金红石型TiO2为主晶相,同时含有少量的Ti组成,并且表面存在大量分布均匀的微孔。掺杂使TiO2的晶胞体积发生膨胀,晶粒尺寸、禁带宽度和内部阻抗减小。其中Nd掺杂使TiO2薄膜禁带宽度减小程度最大,而N掺杂使内部阻抗减小程度最大。通过研究原位生长TiO2薄膜电极的光诱导电子反应和光电子界面动力学行为发现,原位生长TiO2薄膜电极能够发生光诱导电子转移,实现光生电子的快速注入,并且较小的TiO2晶粒尺寸和内部阻抗能够减少光生电子在界面处的湮没。利用第一性原理计算了N和Nd掺杂前后原位生长TiO2薄膜电极的能带结构,计算结果表明掺杂后的TiO2能带结构中产生了杂质能级,使其禁带宽度变小,计算结果与实验值符合较好,这进一步证明掺杂改性可以调节原位生长TiO2薄膜电极的能带结构,进而提高其光电性能。探讨了原位生长掺杂TiO2薄膜电极的光电转换行为,发现晶粒尺寸、内部阻抗和禁带宽度对原位生长TiO2薄膜电极光电性能的影响是三者共同作用的结果,三者之间的良好匹配能够得到较高光电性能的原位生长TiO2薄膜电极。

【Abstract】 The TiO2 film electrode is the important part of the dye-sensitized solar cells. The development of simple production process and TiO2 film with a strong adhesion will promote the practical application. In this paper, the TiO2 thin film electrode with large area is in situ grown on titanium by micro-plasma oxidation.The effect of electrolyte, current density, voltage, concentration of electrolyte, time and sensitization process on photoelectric performance of thin TiO2 film electrode is studied. The TiO2 film electrode grown in situ has been prepared through optimizing process parameters. TiO2 film electrode has optimum photoelectric performance in (NH4)2SO4 electrolyte when TiO2 film is prepared under the current density of 14 A/dm2, voltage of 245 V, electrolyte concentration of 0.5 mol/L, the reaction time of 10min, sensitizing temperature for 25℃and dye concentration of 0.2 mmol/L. The open circuit voltage, short circuit current, fill factor and photoelectric transfer efficiency is 652 mV, 149μA/cm2, 0.39 and 0.095% respectivly.The effect of the N, S, Nd alone doping and N and Nd co-doping on optoelectric properties of TiO2 film electrodes in-situ grown is studied. The results show that N, S, Nd alone doping and N and Nd co-doping can significantly increase photoelectric performance of the TiO2 thin film electrode. Also, the photoelectric performance of the alone doped TiO2 film electrode is superior to that of the co-doped TiO2 film electrode and N-doped TiO2 film electrode shows the best photoelectric performance. The open circuit voltage, short circuit current, fill factor and photoelectric conversion efficiency reaches 701 mV, 165μA/cm2, 0.42 and 0.121% respectivly.The morphology, cell parameters, grain size, absorption spectrometry and internal resistance of the TiO2 film before and after the doping ions were analyzed by using SEM, XRD, XPS, UV-vis DRS and EIS. The results show that the film is composed of rutile TiO2 phase and small amount of Ti and there are a lot of uniform porous on the surface of TiO2 film. Doping ions into TiO2 can expand the cell volume and reduces the grain size, the band gap and the internal resistance. Comparing these samples, the bandgap of Nd-doped TiO2 film is minimum and the internal impedance of N-doped TiO2 is minimum.The photo-induced electronic reaction and the dynamic behavior of photoelectrons in TiO2 interface are researched. The results show that the photo-induced electron transfer and the rapid photo-electronic injection into TiO2 film can be achieved successfully. Smaller crystal grain size and internal impedance can reduce the annihilation of the photoelectron at the TiO2 interface.The band structure of N and Nd-doped TiO2 electrode is calculated by the First-principles. The results show that energy bands of impurities exist in N-doped and Nd-doped TiO2 band structure, which narrows the band gap of TiO2 band gap. The results are in good agreement with experimental data. So, it can be conclueded that doped modification can adjust the energy band structure of TiO2 film grow in situ, and improve the photoelectric performance of TiO2 film.The photoelectric conversion behavior of the doping TiO2 thin film grown in situ is discussed. It is found that the grain size, the internal resistance and the band gap affect the optoelectronic properties of TiO2 film cooperatively. The good match among the three factors can bring the higher photoelectrode performance of thin TiO2 film electrodes grown in situ.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络