节点文献

光解水用改性金红石型TiO2析氧催化剂的制备与光催化性能研究

The Preparations of Modified Rutile TiO2 Catalysts and the Study of Its Photocatalytic Activity for Water Splitting with O2 Evolution

【作者】 童海霞

【导师】 陈启元;

【作者基本信息】 中南大学 , 化学工程, 2008, 博士

【摘要】 针对“双床”光解水析氧过程中光生电子与空穴对分离效率低,导致光解水析氧速率偏低,难于与析氢速率匹配的现状,本研究采用半导体掺杂、半导体复合以及还原气氛处理等多种手段对金红石型TiO2进行了改性,得到了一系列改性TiO2析氧用光催化剂,研究了紫外光(或可见光)辐照下,改性TiO2的光解水析氧性能。首次制备了WO3复合铌掺杂TiO2析氧用光催化剂,并考察了WO3复合浓度对WO3-TiO2/Nb2O5光催化性能的影响;制备了WO3、V2O5和Fe2O3复合的金红石型TiO2光催化剂,首次考察了不同催化剂复合和同一催化剂不同复合浓度对金红石型TiO2催化剂光解水析氧性能的影响,探讨了光催化剂的光致发光性能与其析氧活性之间的关系;首次制备了含氧缺位的金红石型TiO2光催化剂,考察了氧缺位浓度对金红石型TiO2光催化剂析氧性能的影响,采用量子化学计算方法,研究了含氧缺位金红石型TiO2的能带结构;首次制备了含氧缺位的2%WO3-TiO2光催化剂,考察了氧缺位浓度对2%WO3-TiO2催化剂光解水析氧性能的影响。主要研究结果如下:1)WO3的复合能提高TiO2/Nb2O5的光催化活性,当WO3复合浓度为2%时,WO3-TiO2/Nb2O5的光催化活性最高,达到152μmol·l-1·h-1,此时WO3在TiO2/Nb2O5表面刚好达到单层复合。另外,当WO3复合浓度为2%,Fe3+浓度为16·10-3mol·L-1,二次处理温度为873K时,WO3-TiO2/Nb2O5光催化剂光解水析氧速率约为191.7μmol·l-1·h-1。光能转化材料器件化简化了光催化反应装置,能适当延长TiO2光催化剂的使用寿命,简化实验装置,具有较为广阔的前景。2)LRS表明WO3在TiO2表面的单层复合浓度为2%,当达到单层复合时,析氧速率最大,在紫外光辐照下2%WO3-TiO2催化剂光解水的析氧速率约为420μmol·L-1·h-1。根据其透射光谱,采用外推法求出WO3能隙约为2.78eV。LRS表明V2O5在TiO2表面的单层复合浓度约为8%,8%V2O5-TiO2催化剂在紫外光辐照下分解水析氧速率约为110μmol·L-1·h-1,在可见光辐照下分解水的析氧速率约为80μmol·L-1·h-1。根据其透射光谱,采用外推法求出V2O5的能隙约为2.14eV,推导出金红石型TiO2能隙约为3.08eV。无论是在紫外光还还是在可见光照射下,Fe2O3-TiO2光催化剂都不能分解水析出氧气。光催化剂的FL测试结果显示:光催化剂的光致发光性能并非影响催化剂光催化活性的决定性因素。3)在Ti3+含量极少,只有极少量羟基(OH)存在的情况下,适量的氧缺位能显著提高金红石型TiO2光解水的析氧活性,其最大析氧速率达222μmol·L-1·h-1。量子化学计算结果显示:氧缺位能降低半导体带隙能,在带隙中引入中间能级。4)含氧缺位的2.0%WO3-TiO2光催化剂的最大析氧速率约为803μmol·L-1·h-1。基本与“双床”光解水析氢速率相匹配。

【Abstract】 In this study, because of the low separation efficiency of photo-electrons and holes that leads to the low rate of oxygen evolution and difficult to match the rate of hydrogen evolution in the "Double-Bed" splitting water system, modified rutile TiO2 was synthesised by being treated using semiconductor doping, semiconductor compounding and reducing atmosphere. The photocatalytic-activities for oxygen evolution were firstly compared in the "Double-Bed" splitting water system using rutile TiO2 catalysts compounded different semiconductors or the same semiconductor with different compounding concentration. Rutile TiO2 and 2% WO3-TiO2 were treated by reducing atmosphere and the photocatalytic activity of TiO2 and 2% WO3-TiO2 with oxygen vacancies were firstly investigated in the "Double-Bed" splitting water system. Quantum chemistry calculations for different oxygen vacancies content of TiO2 were carried out and the results can reasonablely explain experimental results.WO3 compounding can improve the rate of O2 evolution of the photodecomposition of water. It reaches to 151.8μmol·L-1·h-1 when the concentration of compounding WO3 is 2% which is the concentration of monolayer for WO3 on the surface of TiO2/Nb2O5. Besides, the concentration of the electron acceptor Fe3+ and the second calcination temperature also can effect the rate of O2 evolution. When the concentration of Fe3+ is 16·10-3mol·L-1 and the second calcination temperature is 600℃the maximum rate of O2 evolution of 2%WO3-TiO2/Nb2O5 photocatalyst is 191.7μmol·L-1·h-1.From the result of LRS, the concentration of monolayered WO3 on the surface of TiO2 is 2 mol%. The rate of O2 evolution for TiO2 compounded with WO3 as photocatalyst is larger than that of the TiO2 within 12 hours. With the increase of the quantity of loaded WO3, the rate of O2 evolution also increases. It reaches to the maximum rate of 420μmol·L-1·h-1 with the UV-light irradiation when the concentration of loaded WO3 is 2%. When the concentration of compounding WO3 is above 2.67%, the rate of O2 evolution decreased gradually. There is no response to visible light for WO3-TiO2. According to its transmitted spectrum, the band gap energy of WO3 is about 2.78eV by extrapolation. The concentration of monolayer for V2O5 on the surface of TiO2 is 8%. The maximum rate of O2 evolution is 110μmol·L-1·h-1 when the concentration of compounding V2O5 is 8% with the UV-light irradiation and 80μmol·L-1·h-1 with the visible light irradiation. According to its transmitted spectrum, the band gap energy of V2O5 is about 2.14eV by extrapolation and 3.08eV for rutile TiO2. As for Fe2O3- TiO2, there is no gas evolution with the UV-light or visible light irradiation. The FL spectrum and the rate of O2 evolution show that the photocatalytic activity of the catalyst is influenceed by several factors and the FL intensity is not the pacing one.Appropriate oxygen vacancies could obviously improve the photocatalytic activity of rutile TiO2 with minute quantity Ti3+ and hydroxyl group (OH). The maximum rate for O2 evolution of rutile TiO2 with oxygen vacancies was 222μmol·L-1·h-1. The theoretical calculation shows that oxygen vacancies can reduce the band-gap energy of rutile TiO2 and introduce middle energy level in its forbidden band.The maximum rate for O2 evolution of 2.0%WO3-TiO2 with oxygen vacancies is 803μmol·L-1·h-1 which matches the H2 evolution speed in "Double-Bed" water splitting.

  • 【网络出版投稿人】 中南大学
  • 【网络出版年期】2010年 03期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络