节点文献

城市道路环境机动车污染物排放扩散及其对行人影响研究

Analysis of Vehicle Exhausts Emission Dispersion and Influence on the Pedestrian in Urban Street

【作者】 郭谨一

【导师】 毛保华; 陈海波;

【作者基本信息】 北京交通大学 , 交通运输规划与管理, 2009, 博士

【摘要】 近年来,随着城市机动化进程的不断发展,城市交通拥堵状况日益加剧,由此带来的机动车尾气排放污染问题,严重的困扰着城市居民的工作和生活,恶化着城市生态环境,严重危害着人们的健康,环境污染问题已成为世界各国现代城市交通发展中面临的首要问题。步行是城市居民的主要出行方式之一,城市道路环境是行人步行的重要场所,由于城市道路环境两侧建筑密集,机动车流量较大,因此该区域污染扩散条件较差,污染源排放集中,使得城市道路环境空气污染比区域性空气污染更为严重,步行于其中的出行者没有任何遮蔽完全暴露于空气污染物中,而具有较大的健康风险。本研究以城市道路环境空气中3种影响人体健康的主要污染物(NOx、CO、O3)为研究对象,分析了城市道路环境污染物暴露特征以及行人步行速度相关影响因素;通过车载尾气测试系统得到机动车排放实测数据,分析评价了不同机动车污染物排放模型的模拟精度;在全面采集交通、污染物、气象等各类数据的基础上,开展了城市道路环境污染物扩散模拟研究;在整合数据采集系统与各类模型的基础上,构建了城市道路环境行人污染物暴露模拟平台。本文的主要研究内容和结论包括:(1)本研究比较分析了3种典型机动车尾气排放模型(MOBILE模型、IVE模型、CMEM模型)的原理、车型分类、适用范围等因素,通过车载尾气采集分析系统进行车辆行驶工况、尾气排放、油耗数据的采集,比较分析了3种模型的模拟结果。此外,本研究分别选取机动车在冷启动(Cold Start)、热启动(HotStart)与热稳定(Stabilized)3种状态下的运行工况片段,输入到CMEM模型中,分析比较了不同工况条件下的CMEM模型的模拟精度。研究结果表明,与宏观排放模型MOBILE模型、IVE模型相比,微观排放模型CMEM模型在准确获取机动车行驶工况数据的前提下,模拟精度较高。(2)本研究通过分析实测得到机动车尾气中NOx(NO2+NO)的构成比例,并利用空气污染物检测数据构建了城市道路环境NOx与NO2关系模型,从而改进了污染物扩散模型CALINE4,使其可以应用于城市道路环境NOx浓度的模拟计算。通过对NOx与CO两种污染物浓度模拟结果与实测结果的比较发现,环境风速小于3.0m/s时,模拟结果较为准确;当风速大于4.0m/s时,模拟值比实测值偏低。(3)本研究分析了O3浓度与太阳辐射、NOx浓度、温度、机动车流量、风速的相关性,分析结果表明,城市道路微观环境下O3浓度与风速呈正相关特性,其原因在于风速的升高加大了污染物的扰动与混合程度,促进了O3的生成反应。本文分别选取不同位置O3浓度的相关影响因素,构建了可用于计算路侧检测点与背景检测点O3浓度的多元回归模型。模拟结果与实测结果比较发现,路侧检测点模型计算值平均相对误差为7.71%,背景检测点模型计算值平均相对误差为4.08%。(4)本文构建了城市道路环境行人污染物暴露模拟平台,实现了对于城市道路环境下不同信号控制条件、不同走行线路行人的空气污染物暴露情况的模拟分析。模拟平台由基础数据采集模块、交通仿真模块(VISSIM)、机动车排放模块(CMEM)、污染物扩散浓度计算模块(CALINE4、回归模型)和行人污染物暴露计算模块5部分组成。针对各模块不同的车型分类方法,建立了各模块之间的车型映射关系。(5)应用城市道路环境行人污染物暴露模拟平台,分析了测试交叉口采取固定信号与感应信号两种信号控制方法的交通运行状况、污染物浓度分布状况、行人暴露量与行人污染物吸入剂量的变化情况。仿真结果表明,采用感应信号控制方法,交叉口机动车运行状况得到明显改善,主要污染物浓度显著降低,行人暴露量与污染物吸入剂量明显减少。以CO为例,感应信号控制条件下,行人污染物暴露量均值下降26.2%,通过该交叉口行人的平均CO吸入剂量减少3.1ml。

【Abstract】 Accompany with development of urban motorization, the aggravation of traffic congestion in urban area brings negative effects on environment and human health. Environment pollution has become the most important problem faced by the large cities all over the world. Walking is one of the most important modes in travel, and urban street area is the important environment for pedestrian walking. Because of the large number buildings and vehicles in urban street environment, the vehicle exhaust pollutants are easy to accumulating and hard to dispersing, therefore the pollutant concentration in urban streets environment is higher than other areas. Pedestrians which walk and expose in air pollutants directly are the group who faces the most serious health risk.The thesis selected three important air pollutants (Nitrogen oxide, Carbon monoxide and Ozone) which had negative effects on human health, analyzed the definition and characteristics of pedestrian pollutants exposure and the influence factors of pedestrian walking speed, measured and collected the vehicle exhaust data by using on-board emissions measurement system, evaluated the precision of the different kind of vehicle exhaust models. Through collecting the traffic data, air pollution data and meteorologic data, analyzed the pollutant dispersion in urban area, built a platform which could simulate the pedestrian exposure condition in urban street area. The results of this thesis are as the following:(1) The thesis analyzed and compared the principle, vehicle type classification and application scope of three typical vehicle emission models (MOBILE, IVE and CMEM), collected the vehicle driving cycle data, exhaust emission data and fuel consumption data, compared the simulation results by different models with measured data. The thesis selected three kind of driving cycle fragment data (Cold Start, Hot Start and Stabilized) and input to CMEM model. The result showed that the microscopic emission model CMEM simulation precision was better than other macroscopic emission models.(2) The thesis improved the CALINE4 model by measuring the composition of the NOX (NO2+NO)in vehicle exhaust and the regression model of the NOX and NO2 relationship in urban street environment. The improved CALINE4 model can be used to simulation the concentration of CO and NOX in urban street environment. Comparison between measured and simulated results showed that in the condition of the windspeed lower than 3.0m/s, the simulated results closed to the measured result. If the windspeed higher than 4.0m/s, the simulated results were lower than the measured results.(3) The thesis analyzed the correlation between the O3 concentration and solar radiation, NOX concentration, environment temperature, number of vehicle, wind speed. The correlation analysis results showed that there was a positive relation between O3 concentration and windspeed. Accompany with the increasing of windspeed, the air pollutants mixing degree increases and the O3 formation reaction was accelerating. The multiple linear regression models for calculating O3 concentration in roadside and background were built. The comparison between measured and simulated results showed that the relative error of the roadside model was 7.71 %, and the background model was 4.08%.(4) The thesis built a simulation platform for the pedestrian air pollutants exposure research which could simulate the exposure by different signal control methods and different walking routes. The simulation platform comprised by five different function modules: Basic data collection module, Vehicle emission module (CMEM), Pollutants dispersion module (CALINE4 and Multiple linear regression models) and Pedestrian exposure calculation module. According to the different vehicle type classification definition in functions modules, the vehicle type mapping relation between different modules was built.(5) The thesis analyzed the traffic operation status, concentration of the pollutants, pedestrian exposure and pollutant inhaled dose in fixed timing signal and actuated signal by using the simulation platform. The simulation results showed that traffic operation status and concentration of the pollutants improved significantly, the value of pollutant exposure and dose decreased in condition of actuated signal. For example, the concentration of the CO decreased about 26.2%, the average value of the pedestrian CO dose decreased about 3.1ml.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络