节点文献

无线光网络若干关键技术研究

Research on Some Key Technologies of Wireless Optical Communication for Networking

【作者】 蔡然

【导师】 胡渝;

【作者基本信息】 电子科技大学 , 光学, 2009, 博士

【摘要】 随着时代的发展和社会的进步,伴随通信业务迈向多媒体领域,相应带宽需求急速上升,多业务和大带宽全光联网是未来通信网络体系结构的必然特征。波分复用技术提供的丰富带宽资源使依靠光网络传送和交换海量的业务成为可能,传统光网络向下一代光网络演进的步伐正在加速。为满足政治、经济、军事、文化教育等的需要,光网络已成为各国国家信息架构中的基石。本文基于无线激光通信,展开光网络研究。光纤网络的所有网元都固定于一个不可分离的承载体,所有网元间、各网元与载体间处于相对静止状态。通常,光纤网络属于地面网络系统,其组建包含节点构建和光纤敷设两个独立过程,同时,其节点又被光纤束缚住。其建设周期长,有效利用网络资源与服务质量(Quality of Service,QoS)保障存在一定的矛盾。同时,其链路易遭破坏,并且,其不宜在不方便铺设线路、更不能够在星间通信等无法铺设线路的环境中实现。无线光通信的传输摆脱了有线介质的束缚,相应通信链路与节点可集成为一体。无线激光通信支持现有光纤通信的协议,能够提供类似光纤通信的信息传输速率。只要两点直线可视,就可建立一条天然具备抗御链路毁坏能力的无线激光通信链路。一个无线光网络系统可被承载于具有不同运动规律、位于离地心不同距离的多个相互离散的承载体,拥有光纤通信所不具备的巨大灵活性和支持移动通信等优越特性。可以在大范围移动中支持高速通信。再者,无线光通信单元设备体积小、重量轻,架设简单,搭建、配置和维护较为容易。此外,无线激光通信基于无线电子载波无法比拟的非可视窄波束,保密性强、抗干扰性好。然而,目前的光通信业界只是将无线光通信简单地以链路形式,作为光纤的替代来透明支持光纤通信协议,无法充分发挥无线光通信的优越特性。为了最大限度地提高资源利用率、保障QoS、和追求最佳性能,必须根据无线光通信的特性来进行组网技术和运行技术,及相应实现——无线光节点和承载体的研究开发。从而,本文在第二章中,基于无线光通信的独有特性,对无线光网络体系结构进行了研究,建立了相关理论模型,获得了多区多类三维网状网无线光网络构架。并结合无线光网络运行,对有机组成无线光网络体系的平面区骨干通信子网络和跨区三维骨干通信子网络的组建,以及相应平面区类子域、平面区类子域组、相邻跨区子域、非相邻跨区子域的构建和运行方式进行了推证和论述。获得了无线光网络最优基础构架——回路绕点无线光互联基。进而,得到了构建具有良好网络鲁棒性的无线光网络原始拓扑图的具体算法,以及基于回路绕点无线光互联基修剪无线光网络原始拓扑图,生成无线光网络拓扑图的具体算法。最后,获得了构造运行回路的具体算法,以及合理分配网络容量的具体算法。相应数字仿真证明了本章技术的有效性。只有在邻接无线光网络主网元通过连通激光源发出的激光桥接而连通后,无线光网络才能够将信息,由一个无线光节点送达另一个无线光节点。本文在第三章:研究了无线光网络主网元功能结构,并重点针对相互连通激光源——相干叠层列阵,结合Talbot腔和模式耦合等,建立了理论模型。对激光源在连通工作中的稳定性进行了分析,获得了漂移补偿技术及其实现方法和设备。并且,结合相关仿真软件和实验,对无线光通信环境的工作情形进行了分析和推证,获得了使激光源能够在恶劣多变温差环境中稳定工作,从而稳定地连通无线光节点的预失真补偿源技术及其实现系列装置。相关实验证明了其在连通中的有效性。各个网络成员互相认知是通信网络运行的前提;且为确保所获传送业务路由的合理及所需网络资源的正确分配,各个网络成员必须知晓网络内当前的状态。所以本文在第四章:结合无线光网络建立无线激光通信链路和邻居发现合一的操作特性等,研究了无线光网络路由。论述了无线光最短路径优先及无线光网络独特的指派路由器组播机制,得到了单层无线光网络状态信息扩散技术。进而,结合无线光网络多平面分层组播,论述了无线光网络分层逻辑结构形成,得到了分层无线光网络状态信息扩散技术。最后,论述了相应网络状态信息交互机制,得到了引入无线光通信的光网络设计算法。相应数字仿真证明了本章所获技术的有效性。鉴于业务的趋势变得快速动态化,引入通用多协议标记交换技术支持动态连接,是光网络控制的主流支撑技术。本文第五章:针对无线光通信具体特点,对通用多协议标记交换技术加以改造和拓展,得到了无线光通用多协议标记交换技术。定义了无线光通用多协议标记交换接口。在资源预留协议扩展了自适应域。研究清楚了无线光通用多协议标记交换标记对象格式内涵,以及当无线光与有线光互联时,相应通信功能模块所进行的处理。获得了无线光通用多协议标记交换嵌套技术,以及与以上各技术相关,建立交换路径操作技术。而后,研究了对应光突发交换机制的无线光突发标记交换技术,获得了无线光突发标记交换无线光网络构架,相应组建总则、关键细则、决策优化技术,以及通过有效覆盖的母锥体、有效覆盖、最短可视矢量法构建单向资源预留工作区域。论述了运行工作模式和相关算法,阐明了单向预约资源工作过程和相关运行特点,结合数字仿真,展示了无线光网络与光纤网络相辅相成相得益彰,从而给光网络性能带来的提升。随着研究的不断深入,无线光网络技术及其实现不断取得进步,光网络必将迎来更加美好光明的前景。本文所获得的研究成果,除本实验室的论文和专利外,目前未见有公开详细技术报告。

【Abstract】 With development of the world, multimedia services are becoming more and moreimportant. The demands of bandwidth for transinformation are increasing sharply. Nowthat Wavelength Division Multiplex (WDM) can offer resourceful bandwidth, it makesoptical network have capacity for carrying and switching mass data. The characteristicof the future communication network must be all optical networking. For satisfyingrequirements for politics, economy, military affairs, education, optical network has beenthe cornerstone of national information infrastructure of a great power. Currently, thespeed of optical network development is accelerating. Based on wireless lasercommunication, this paper engages in study of optical network.In fiber network, all elements can only be fixed in an supporting body, the positionof each element is changeless. Usually, a fiber network is of ground network system. Ittakes a long time to set up. The setting of nodes are independent of cabling, and areimprisoned by fibers as well. A fiber link is vulnerable. Furthermore, in manycircumstances, e.g. in intersatellite optical communication, to lay a fiber link is hard,even is impossible. Moreover, there is conflict between Quality of Service (QoS) andefficiency of using fiber network resources. Wireless optical communication cansupport all protocols of fiber communication. The rate of information transmission inwireless optical communication can be similar to that in fiber communication, butwireless optical communication extricates itself from the shackle of fiber. A wirelesslaser link can be established as long as there is a clear line of sight between two wirelessoptical nodes. So a wireless optical link can be integrated into the wireless optical nodes,the attribute of the wireless optical link is robust. Elements of a wireless optical networkcan be fixed in different supporting bodies. The distance between a supporting bodymay be different from other one’s, so does the regularity of the supporting body. Thuswireless optical communication has unique merits, for example, the maneuverabilitywith confidentiality is so excellent, in fact, wireless optical communication is in a classby itself. It can support high-speed communication as supporting bodies are in moving.In addition, the sightless laser beam is narrower than microwave beam too much. This makes privacy and the security of information that carried by it be better, This is alsohighly beneficial to antijam. Sure enough, the volume is less, the weight is lighter. Toset up a wireless optical network is simple and easy, corresponding configuration andmaintenance are facile.At present wireless optical communication is applied as substitution of high-speedlink for fiber, but the advantage can not be taken sufficiently. For improving utilizationratio of resources to the upmost, guaranteeing QoS, achieving bestReliability---Availability---Serviceability (RAS), it is absolutely necessary that toresearch and develop wireless optical network based on the characteristics of wirelessoptical communication specially. Then the technology for optimally building wirelessoptical node, the technology for optimally setting up wireless optical network, and thetechnology for wireless optical network behaving optimally can be obtained. In the lightof the above consideration, in chapter 2, the architecture of wireless optical network ispresented. The multi-section multi-class three-dimensional wireless optical networkmodel is constructed. The technologies of building the wireless optical sectionsubnetwork and its section domain, the transregional three-dimensional subnetwork andits transregional domain, and the domains group are provided. The optimum structuralframe of wireless optical network is discussed in detail. With wireless optical nodevirtual ring connection graph, the algorithm for building the robust wireless opticalnetwork with high cost performance, the algorithm for allocating resources, and thealgorithm for steering virtual ring are proposed. With the numeric emulation, theeffectiveness of the technologies are demonstrated.None but is connected by laser beam, information can be transfered from onewireless optical network node to the other, so in chapter 3, the functional configurationsof wireless optical nodes are presented. After technique details about high power laserdiode arrays with Talbot cavity, especially the stability of the laser diode arrays working,are studied, technology for compensating the excursion in the external cavity isprovided. By the help of special simulation software and experiment, the influence ofenvironment on wireless optical communication is analyzed. And then the predistortiontechnology for guaranteeing high quality of the optical connection in poor workingconditions is provided. The effectiveness of the technologies are demonstrated by theexperiment. Only after all wireless optical network nodes well know the network state, routeplanning and allocation of resources can be done properly. Now that wireless opticallink establishment and neighbour discovery in wireless optical network becomeintegrated, so chapter 4 provides wireless optical open shortest path technology,wireless optical multi-cast technology, wireless optical monolayer routing technology,wireless optical hierarchical multi-layers routing technology, hybrid optical network andcorresponding routing technology. And presents the wireless optical hierarchical logicalstructure. Corresponding numeric emulation demonstrated the effectiveness of thetechnologies.Generalized Multi-Protocol Label Switching technology (GMPLS) is themainstream of control technique for setting up dynamical connection in optical networktimely. After GMPLS is extended into Wireless Laser Generalized Multi-Protocol LabelSwitching (WLGMPLS) in chapter 5, seven types of interfaces are defined. Andresource reservation protocol is modified to involve the self-adaption field. Thenformats and structures of wireless laser generalized label switching objects arepresented. Finally, wireless optical nesting technology is proposed. Subsequently, withWLGMPLS, the linchpin that Optical Burst Switching (OBS) technology uses wirelessoptics is exposed. The architecture, the general rules of constructing, the key detailedrules, decision-making technique are discussed. From the mother cone to the effectivecover, then to the shortest sight vector, the techniques for constructing the one-wayresource reservation domain in wireless optics are provided. Whereafter correspondingworking pattern and algorithms are proposed. With numeric emulation, wireless opticalcommunication who integrates with fiber network improves performance of opticalnetwork is demonstrated. Wireless optics and fiber optics are complementary. Aswireless optical network technology progresses, the prospect of optical network is beingbetter and better cheerful. To my knowledge, no proces-verbal to the above-mentionedtechnical details, except our lab’s papers and patents, has been vended.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络