节点文献
ZnAl2O4基低介电常数微波介质陶瓷的结构与性能
Microstructures and Properties of ZnAl2O4-Based Low-Permittivity Microwave Dielectric Ceramics
【作者】 雷文;
【导师】 吕文中;
【作者基本信息】 华中科技大学 , 材料物理与化学, 2008, 博士
【摘要】 综观微波介质陶瓷材料的发展历史和应用前景,结合当前微波介质陶瓷的研究现状,确定ZnAl2O4基陶瓷为本文的研究对象。利用X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)、X射线光电子能谱(XPS)、电子探针(EPMA)和网络分析仪等仪器系统地研究了制备方法(常规固相法和熔盐法)、烧结工艺、相成分、微观组织结构和微波介电性能之间的关系。首先研究了(1-x)ZnAl2O4-xTiO2材料的烧结特性、相成分和微波介电性能。结果表明,TiO2能有效地改善材料的烧结性能和调节材料的谐振频率温度系数,当x=0.21时,(1-x)ZnAl2O4-xTiO2陶瓷具有近零的谐振频率温度系数,体系中包括细小的ZnAl2O4尖晶石晶粒和粗大的金红石相晶粒。在此基础上,系统地研究了(1-x)ZnAl2O4-xTiO2 (x=0.21)材料的预烧温度、烧结温度和升温速率,并确定了最佳工艺参数,它们分别为1150℃、1500℃和5℃/min,此时的微波介电性能为:εr=11.6、Q·f=74000GHz、τf=-0.4ppm/℃。利用熔盐法制备了(1-x)ZnAl2O4-xTiO2陶瓷,并探索了材料的烧结性能、微观组织和微波介电性能特点。与常规固相法相比,利用LiCl和ZnCl2熔盐均能制备出颗粒细小均匀、活性高的(1-x)ZnAl2O4-xTiO2粉末,并能有效降低材料的烧结温度,但同时也降低了材料的密度和微波介电性能。当熔盐为LiCl、预烧温度为900℃时,(1-x)ZnAl2O4-xTiO2(x=0.21)陶瓷的致密化温度为1425℃,微波介电性能分别降到:εr=10.0、Q·f=39970GHz、τf=-21.2ppm/℃。当x=0.25时,(1-x)ZnAl2O4-xTiO2陶瓷的致密化温度降低到1300℃,τf值被调节到-7.1ppm/℃,同时,Q·f值降低到27000GHz,而εr值变化很小。当熔盐为ZnCl2、预烧温度为900℃时,(1-x)ZnAl2O4-xTiO2(x=0.25)陶瓷的致密化温度为1350℃,此时材料的微波介电性能为:εr=10.0、Q·f=56440GHz、τf=-25.4ppm/℃。利用MO(M=Co, Mg, Mn)和TiO2共同改性ZnAl2O4时,比较了(1-x)ZnAl2O4- xM2TiO4(x=0.21)与(1-x)ZnAl2O4-xTiO2(x=0.21)陶瓷的相成分、微观结构和微波介电性能之间的差异。研究表明,Co2+离子能促使Ti4+离子固溶入ZnAl2O4尖晶石晶格中形成单一的固溶体相,能将Q·f值从74000GHz提高到94000GHz。Mg2+和Mn2+离子均不能使Ti4+离子完全固溶入ZnAl2O4晶格中,而在体系中分别出现了MgTi2O5和ZnMn3O7相,两者的Q·f值分别为188540GHz和23530GHz。与(1-x)ZnAl2O4-xTiO4 (x=0.21)陶瓷相比,(1-x)ZnAl2O4-xM2TiO4(x=0.21)陶瓷的εr和τf值均有所降低,但相互之间的差别很小。进一步研究了(1-x)ZnAl2O4-xM2TiO4(M=Co, Mg)陶瓷的相变过程和微波介电性能特点。结果表明,对于(1-x)ZnAl2O4-xMg2TiO4体系,当x=0.1时,ZnAl2O4能与Mg2TiO4形成尖晶石固溶体,当x=0.21~0.8时,体系中包括尖晶石相和MgTi2O5相,当x=0.9和1.0时,体系中存在尖晶石相和MgTiO3相。对于(1-x)ZnAl2O4-xCo2TiO4体系,当x=0.1~0.3时,ZnAl2O4能与Co2TiO4形成尖晶石固溶体,当x=0.4时,体系中析出少量Co2TiO4相,当x=0.5时,体系中同时析出Co2TiO4和(Zn, Co)Al2O4相,两者相互交替生长在(1-x)ZnAl2O4-xCo2TiO4基体上。随着M2TiO4含量的增加,(1-x)ZnAl2O4- xM2TiO4陶瓷的εr值几乎线性增大,Q·f值先减小然后增大,τf值变化很小。研究了TiO2、CaTiO3和SrTiO3对0.79ZnAl2O4-0.21M2TiO4(M=Co, Mg)陶瓷谐振频率温度系数的影响。研究发现,TiO2不能调节0.79ZnAl2O4-0.21M2TiO4(M=Mg, Co)材料的τf值,因为TiO2与基体反应生成了具有负温度系数的MTi2O5相。CaTiO3和SrTiO3均能有效地调节0.79ZnAl2O4-0.21M2TiO4(M=Co, Mg)材料的τf值。总的来说,随着CaTiO3(或SrTiO3)添加量的增多,材料的εr和τf值逐渐增大,而Q?f值具有减小的趋势。研究了ZnB2O4和B2O3助烧剂对(1-x)(0.79ZnAl2O4-0.21Co2TiO4)-xCaTiO3(x=0.08) (ZCC)和(1-x)(0.79ZnAl2O4-0.21Mg2TiO4)-xCaTiO3(x=0.06)(ZMC)材料的烧结特性、相成分和微波介电性能的影响。ZnB2O4助烧剂能将ZCC材料的烧结温度降低到1100℃,降幅为300℃,但ZnB2O4助烧剂对ZMC材料以及B2O3助烧剂对ZCC和ZMC材料的助烧作用均不显著,仅能降低50~100℃。当掺入助烧剂后,材料的εr值均有所降低,但材料的Q?f和τf值的变化趋势与助烧剂的种类和数量有关。一般而言,ZnB2O4助烧剂使ZCC和ZMC材料的Q?f值降低幅度较大,而B2O3助烧剂对Q?f值的影响相对较小。
【Abstract】 Based on the development, application and research actuality of microwave dielectric ceramics, ZnAl2O4-based ceramics are chosen as research objective in this dissertation. The relationships among preparing methods (including solid-state reaction and molten salt method) and processes, phase compositions, microstructures and microwave dielectric properties have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), electron-probe microanalysis (EPMA) and network analyzer, etc.Sintering characteristic, phase compositions and microwave dielectric properties of (1-x)ZnAl2O4-xTiO2 ceramics had been studied. It shows that TiO2 can effectively improve the sintering characteristic and control the temperature coefficient of resonant frequency (τf). (1-x)ZnAl2O4-xTiO2 (x=0.21) ceramics with near-zeroτf value includes smaller ZnAl2O4 spinel grains and larger rutile grains. And then, the sintering processes such as calcining temperature, sintering temperature and heating rate of the (1-x)ZnAl2O4-xTiO2 (x=0.21) system have been researched systematically, and the optimal sintering process parameters have been determined which are 1150℃, 1500℃and 5℃/min, respectively, in which sintering conditions the microwave dielectric properties are as follows:εr=11.6, Q·f=74000GHz,τf=-0.4ppm/℃.Sintering characteristic, microstructures and microwave dielectric properties of (1-x)ZnAl2O4-xTiO2 ceramics synthesized by molten salt method had been explored. In contrast to the solid-state reaction, smaller size, more homogenous and higher activity powder can be synthesized by LiCl and ZnCl2 molten salt, which lowers the sintering temperature, at the same time, also deteriorates the density and microwave dielectric properties of the (1-x)ZnAl2O4-xTiO2 ceramics. (1-x)ZnAl2O4-xTiO2 (x=0.21) calcined at 900℃in LiCl molten salt can be fully densified at 1425℃, and the microwave dielectric properties withεr=10.0, Q·f=39970GHz andτf=-21.2ppm/℃can be obtained. When x is equal to 0.25, the densification temperature reduces to 1300℃, andτf value is adjusted to -7.1ppm/℃and theεr value nearly doesn’t change, however, the Q·f value reduces to 27000GHz. (1-x)ZnAl2O4-xTiO2 (x=0.25) calcined at 900℃in ZnCl2 molten salt can be fully densified at 1350℃and the ceramics exhibits the microwave dielectric properties withεr=10.0, Q·f=56440GHz andτf=-25.4ppm/℃.When MO(M=Co, Mg, Mn) and TiO2 were added to ZnAl2O4, the phase compositions, microstructures and microwave dielectric properties of (1-x)ZnAl2O4-xM2TiO4 (x=0.21) ceramics were compared with those of (1-x)ZnAl2O4-xTiO2 (x=0.21) ceramics. It is found that the single phase solid solution appears in the (1-x)ZnAl2O4-xCo2TiO4 (x=0.21) ceramics because Co2+ ion can promote Ti4+ ion to diffuse into the ZnAl2O4 crystal lattice which increases the Q·f value from 74000 to 94000GHz. However, the MgTi2O5 and ZnMn3O7 phase can be observed in the (1-x)ZnAl2O4-xMg2TiO4 (x=0.21) and (1-x)ZnAl2O4-xMn2TiO4 (x=0.21) ceramics, whose Q·f value is 188540GHz and 23530GHz, respectively. Theεr andτf values of the (1-x)ZnAl2O4-xM2TiO4 (x=0.21) are lower than those of (1-x)ZnAl2O4-xTiO2 (x=0.21) ceramics, whereas theεr andτf values are weakly dependent on the M element and are equal to about 9.7 and -65ppm/℃, respectively.Phase transition and microwave dielectric properties of (1-x)ZnAl2O4-xM2TiO4 (M=Co, Mg) ceramics had been further studied. In the (1-x)ZnAl2O4-xMg2TiO4 system, ZnAl2O4 can form a spinel solid solution with Mg2TiO4 for x=0.1, while the MgTi2O5 and MgTiO3 second phase exists in the systems for 0.21≤x≤0.8 and 0.9≤x≤1.0, respectively. In the (1-x)ZnAl2O4-xCo2TiO4 system, ZnAl2O4 can also form a spinel solid solution with Co2TiO4 for 0.1≤x≤0.3, however, the Co2TiO4 second phase appears in the ceramics for x=0.4. When x is equal to 0.5, Co2TiO4 and (Zn, Co)Al2O4 phase coexist and grow alternately in the (1-x)ZnAl2O4-xCo2TiO4 matrix. As the content of M2TiO4 increases in the (1-x)ZnAl2O4-xM2TiO4 system, theεr value takes on a tendency of linear increase, and the Q·f value increases initially and then decreases, while theτf value only changes slightly.The effects of TiO2, CaTiO3 and SrTiO3 additions on theτf value of the 0.79ZnAl2O4-0.21M2TiO4 (M=Mg, Co) ceramics had been investigated. TiO2 cannot control theτf value of the 0.79ZnAl2O4-0.21M2TiO4 (M=Mg, Co) ceramics due to the MTi2O5, formed by the reaction of TiO2 with the matrix, with relative high negativeτf value, however, CaTiO3 and SrTiO3 can adjust effectively theτf value. In general, with the increasing amount of CaTiO3 (or SrTiO3), bothεr andτf values increase gradually, while, the Q?f value has a tendency of decrease.The influences of ZnB2O4 and B2O3 sintering aids on the sintering characteristic, phase compositions, microwave dielectric properties of (1-x)(0.79ZnAl2O4-0.21Co2TiO4)- xCaTiO3(x=0.08)(ZCC) and (1-x)(0.79ZnAl2O4-0.21Mg2TiO4)-xCaTiO3(x=0.06)(ZMC) ceramics had been studied. When ZnB2O4 is added to ZCC system, the sintering temperature is reduced to 1100℃, which is 300℃lower than the sintering temperature of undoped ZCC. When B2O3 is added to ZCC system, or ZnB2O4 (or B2O3 ) is added to ZMC system, the sintering temperature only lowers 50~100℃. In comparison with the undoped ZCC (or ZMC), theεr values of the doped system all reduce, and the Q-f andτf values are dependent on the category and amount of additions. On the whole, ZnB2O4 addition greatly reduces the Q-f value of the ZCC (or ZMC) ceramics, while B2O3 addition does not affect obviously on the Q-f value.
【Key words】 ZnAl2O4-based ceramics; spinel structure; low-permittivity; solid-state reaction; molten salt method; microwave dielectric properties;