节点文献

飞轮电池及其混合磁悬浮控制系统的研究

Study on the Flywheel Battery and It’s Hybrid Maglev Control System

【作者】 褚海英

【导师】 范瑜;

【作者基本信息】 北京交通大学 , 电力系统及其自动化, 2009, 博士

【摘要】 飞轮电池是一种以旋转动能的形式存储电能的储能装置。其工作原理是将多余的电能转变为高速旋转的飞轮转子的动能存储下来;在需要电能的时候,再将飞轮转子的动能转变为电能释放出来。和传统的化学电池相比,飞轮电池具有高能量密度,充放电时间短和长寿命等优点,所以满足了当今世界对环保,高效能源的需求。飞轮电池在混合动力车、电力系统调峰等等领域都有十分广阔的应用前景。在综合分析了与飞轮电池设计相关的关键技术的基础上,提出了一种拟设计作为混合动力轨道交通工具的辅助动力的飞轮电池设计方案,其中,重点介绍了一种用于本文设计的飞轮电池的电磁和永磁混合磁悬浮轴承方案,即:飞轮转子的轴向位移由电磁铁主动控制,其余自由度由永磁铁以吸力方式给以约束,同时由永磁铁提供电磁控制的偏置磁场。介绍了电磁轴承和永磁轴承的相关基础理论知识,推导出了电磁铁和永磁铁的磁力大小和刚度的解析计算公式。在此基础上,给出了本文设计的混合磁悬浮轴承的具体机械和电气设计参数。采用有限元分析方法,对比了两种永磁轴承构型的径向磁力和刚度特性,为永磁轴承的尺寸设计提供了参考。分析了电磁力和永磁力的轴向和径向的磁力和刚度特性,最后分别得出了电磁力和永磁力的位移和刚度特性曲线。对本文设计的磁悬浮轴承进行了受力分析,得出了磁轴承的数学模型。并在此基础上,对磁轴承在PD以及PID控制器下对阶跃扰动力的位移响应进行了仿真,分析了各种控制器参数下系统的响应变化情况,为实际控制器的设计提供了理论上的参考。并且还分析了各种延迟因素对系统稳定性的影响。最后,设计了模糊—PID复合控制器,并且对模糊—PID复合控制器和PID控制器作用下的位移响应进行了对比。仿真结果表明模糊控制器的加入使得磁悬浮系统抗扰动的能力增强。最后,设计了一个永磁—电磁混合磁悬浮实验装置,并采用盘式永磁无刷电机作为旋转驱动装置,分别采用模拟控制器和DSP数字控制器,成功实现了转子的稳定悬浮。实验结果证实了本文设计的飞轮电池磁悬浮方案的可行性。

【Abstract】 Flywheel Battery is a type of energy storage device which stores electricity in the form of kinetic energy of fast spinning flywheel rotor.The principle of flywheel battery is storing the surplus electricity by motoring the flywheel rotor,then retrieving the kinetic energy by decreasing the speed of flywheel rotor when electricity is required. Compared with the traditional chemical battery,flywheel battery has the merits of higher energy storage density,shorter charging and discharging period and longer life span etc.,which meet the demands for efficient energy resource as well as the environmental protection.The application of flywheel battery is promising in the field such as Hybrid Electric Vehicle(HEV),load leveling of electric power.A flywheel battery designed as the assisted power for the hybrid electric rail vehicle is proposed after an overall investigation on the key techniques about the flywheel battery design,wherein,a hybrid magnetic bearing for the above proposed flywheel battery is presented which incorporates both the electromagnetic control and permanent magnets,namely,the flywheel’s axial freedom is actively controlled by electromagnet while the other DOFs are restricted by the permanent magnets in attractive mode,simultaneously,the permanent magnets also provide the bias flux for electromagnetic control.The formulae of magnetic force and it’s stiffness are derived based on the fundamental theory about the permanent and electric magnetic bearing.The mechanical and electrical specifications are presented accordingly.The properties of magnetic force and it’s stiffness of two types of permanent magnetic bearing configurations are compared using the Finite Element Analysis. Eventually,the curves for relationship between magnetic force vs.displacement & current are obtained.The magnetic bearing system is modeled through analyzing the force exerted on the designed magnetic bearing.Thereafter,the response of magnetic bearing to a step disturbance force is simulated under PD and PID controller,which provides some references for design of the actual controller.Finally,a controller combining both the fuzzy and PID control is presented and simulated.The simulation result shows that fuzzy-PID combined control is more robust to the disturbance force than the pure PID control. Eventually,a hybrid maglev(magnetic levitation) experiment is conducted respectively using the analog controller and DSP controller,in which,a pancake motor is used as the rotating driven device.The flywheel rotor is levitated stably under the said controller,which verifies the feasibility of the proposed maglev scheme.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络