节点文献

基于空调排风与墙体能量交换的建筑节能

Building Energy Saving Based on Energy Exchange between Exhaust of Air Conditioning and Envenlope

【作者】 冯劲梅

【导师】 连之伟;

【作者基本信息】 上海交通大学 , 制冷及低温工程, 2008, 博士

【摘要】 本课题立足于建筑节能的目标与要求,在现有的建筑材料和建筑结构基础上,结合建筑设备,采用较为合理的节能方式和方法,达到建筑复合节能的目标。结合建筑围护结构本体和空调设备的排风热回收,提出了一种新型的建筑围护结构——夹层通风墙体,整体优化建筑节能,在回收空调排风能量的同时,墙体的热工性能得到改善,人体与墙体的热辐射减弱,提高了建筑物内人体的热舒适性,达到了节能环保的目的。本文针对基于空调排风与墙体能量交换的建筑节能问题,采用理论结合实验的研究方法对夹层通风墙体进行了研究,主要研究内容包括:(1)采用有限元法对夹层通风墙体内的气流的温度场和速度场进行模拟分析计算,讨论其最佳的参数设计,分析了在实验室条件下和实际工程中,不同建筑层高情况下的空气夹层设计时的厚度与高度的最佳比值,经模拟计算,最佳取值为1/55;讨论了通风墙体夹层的进风口风速对节能效果的影响情况,确定其最佳取值范围为0.6~1.0m/s;进出风口高度对速度场和温度场的影响情况,进出风口高度小于200mm时,对整个夹层的通风效果影响不大,当风口高度为250-500mm时,对夹层通风效果影响较大,需合理安排。(2)搭建模拟实验房对夹层通风墙体对空调排风的能量回收以及建筑空调负荷节能情况进行实验研究,实测了夹层通风墙体内的速度场与温度场的变化情况,同时实测普通墙体的各种热工参数,并进行比较;通过实验研究验证数值模拟结果基本符合实际,实测了夹层通风墙体的内墙温度与室内空气温度之间的差值,实测了夹层通风墙体空调节能值为0.05KW/KW制冷(热)量。(3)通过对我国不同传热系数外墙的办公建筑的空调冷热负荷进行模拟计算,讨论了墙体传热系数对空调负荷的影响情况,模拟结果表明,应根据各地不同的气候条件选择合理的建筑外墙结构。对于北方寒冷地区,应尽量采用传热系数小的外墙以达到减少空调热负荷的目的;对于南方以空调冷负荷为主的建筑,盲目追求传热系数小的外墙对夏季空调节能反而会起到相反的效果。(4)对夹层通风墙体的工程应用化进行了讨论,进行了夹层通风墙体节能的技术经济分析,分析结果表明,采用夹层通风墙体,投资回收期较短,在本文算例中,上海地区典型办公建筑的投资回收期为4年。分析了夹层通风墙体的工程适用条件,夹层通风墙体适用于外墙面积大、新风量大、空调负荷大的建筑。结合医院的手术洁净室空调采用夹层通风墙体的实例,论证了其工程应用的合理性和可行性。本课题主要根据上海地区的气候地域特点对基于空调排风与墙体能量交换的建筑节能进行了理论与应用研究,所得出的方法与结论可供相关的建筑节能理论、研究、设计参考。

【Abstract】 The objective of this subject is based on the purpose and requirement of building energy saving. On the bases of the building materials and construction, by combining the building facilities, using the most reasonable methods and modes of building energy saving, achieve the compound building energy saving aims.An innovation envelope– interlayer ventilation wall has been put forwarded combining the wall and air exhaust recycling of air conditioning equipments to optimized building energy saving integrally. While the recycling air exhaust, energy can be recovered, the thermal characteristics of interlayer ventilation wall can be improved, the radiation can also be reduced between the body and internal wall surface, increasing the thermal comfort of human being inside the building, and the purpose of energy saving and environmental protection can be achieved.(1)The air current temperature field and velocity field of the interlayer ventilation wall have been analog calculated and analyzed by finite element method. After reviewing the optimum parameters design, the optimum design thickness and height ratio of the air interlayer is 1/55. The optimum inlet air velocity of the interlayer ventilation wall is from 0.6m/s to 1.0m/s, and how the inlet air velocity effects energy saving. The influence is little for interlayer ventilation when the height of inlet less than 200mm, the influence is obvious when the height is from 250mm to 500mm, and the position should be placed reasonably.(2)The air exhaust energy recovery of interlayer ventilation wall and energy saving of building air conditioning loads have been researched by setting up the experimental analog buildings. The numerical simulation results have met the reality certificated by experimental research. The result about the energy saving of air conditioning system is 0.05KW/KW refrigerating (heating) output.(3)Using the simulating software DeST to calculate the air conditioning cool and heat loads of office buildings with different heat transmission coefficient envelope in six cities of China. The results show that the lower the heat transmission coefficient of building envelope, the lower the air conditioning loads, the better energy saving of building in winter. Inverse, the lower the heat transmission coefficient of building envelope, the higher the air conditioning loads, the worse energy saving of building in summer. The air conditioning loads varied with different proportion when the indoor set temperature was higher or lower 1℃. So there exists an optimized temperature setting for satisfaction human. The influence of the outdoor meteorological parameter was greater than the envelope heat transmission coefficient to building fractional energy saving.(4)The engineering application of interlayer ventilation wall has been discussed. Technical and economical analysis of interlayer ventilation wall has been done. Based on the buildings in Shanghai area and a standard air conditioning system, a 4 years payback period for interlayer ventilation wall implementation was needed. The relevance conditions of interlayer ventilation wall are big envelope, big fresh air and big air conditioning loads buildings. The air conditioning cooling and heating loads of office buildings with different heat transmission coefficient envelope in six cities of China have been calculated. How envelope heat transmission coefficient influenced air conditioning loads has been discussed.The building energy saving theory and application has been researched based on the energy exchange between air exhaust and envelope according to Shanghai’s climate and local features. The methods and conclusions may be useful to building energy efficiency theories, research and design.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络