节点文献

船舶电力推进系统的建模与仿真

Modeling and Simulation for Marine Electrical Propulsion System

【作者】 高海波

【导师】 高孝洪; 陈辉;

【作者基本信息】 武汉理工大学 , 轮机工程, 2008, 博士

【摘要】 船舶电力推进系统具有许多传统推进系统不可比拟的优势,是国内外船舶制造行业研究的热门。开展船舶电力推进系统的建模和仿真研究,再现系统的稳态及动态工作过程,揭示系统的内在规律,对于指导船舶电力推进系统的设计和使用具有现实意义。本文从实验台架设计及分析、船舶电力推进系统数学模型建立、仿真结果与台架实验对比、典型工况与故障仿真、谐波分析、推进电机节能运行等方面展开研究。本文主要工作是:1)以武汉理工大学船舶电力推进实验装置为研究对象,分析了系统的组成、特点及工作原理。建立了较完整的系统数学模型,涵盖船舶电力推进系统中的主要设备,包括原动机、调速器、发电机、调压器、变压器、变频器、滤波器、螺旋桨等,可以用于系统分析,并具有一定的通用性。为了逼真地模拟螺旋桨负载,采用Chebyshev多项式拟合诺尔特斯特洛姆(Nordstrom)系列试验图谱,适合于四象限工况仿真,并可根据不同桨型灵活修正。为保证实验仿真系统具有与实船相同的动态特性,从分析推进系统机械运动平衡方程式着手,确定了模拟负载扭矩和实船螺旋桨扭矩之间的比例关系。并用MAST语言对各设备数学模型进行描述,在Saber软件中构建了仿真模型,构建成整个电力推进系统的仿真模型。运用仿真模型进行实验,并与台架实验进行对比分析,验证了模型的有效性和精度。2)进行了典型工况、谐波及故障仿真实验,揭示了船舶电力推进系统运行的特点和规律。模拟船舶在启航、制动、急速反转等典型工况时船舶电力推进系统的特性,研究动态过程中电力推进系统的响应时间、电流、电压、转矩等:对比了相同吨位及功率等级的柴油机推进及电力推进系统在停车和紧急制动工况下的性能,并就电力推进系统在低航速下的特性进行了仿真分析;研究了谐波对船舶电网的影响,为改善电网品质,模拟设计了交流输入端滤波器,并进行了仿真实验验证其滤波效果;研究了推进电机在启动、稳定运行、停机阶段对电网的影响;针对如整流器故障、接地故障、汇流排短路、逆变器故障等主要故障进行仿真实验;所做仿真研究揭示了系统内在规律,并给出操作指导和建议。3)通过对船舶电力推进系统中的推进电机运行效率进行分析,指出系统存在可观的节能空间。在寻求推进电机最佳效率工作点时,从能量转换的角度研究最小损耗控制策略。利用考虑铁损的电机等值电路模型,采用数值分析方法确定了电机不同工况下对应的最优效率工作点及最优磁链,改进了矢量控制方法,从而实现最小损耗控制,并通过仿真实验验证了效率优化控制策略的有效性,并研究了效率优化控制的适用范围。针对效率优化控制使得系统动态响应特性变差这一问题,提出一种兼顾效率与动态响应的推进电机控制策略,并通过仿真实验与传统矢量控制方法进行对比,验证了新的控制策略的有效性,为提高船舶电力推进系统效率并同时保证动态响应特性提供解决方案。本论文受到国家“211”建设项目“武汉理工大学船舶电力推进仿真实验室建设”、教育部博士点基金项目“舰船电力推进系统仿真”(基金号20040497012)、高速船舶工程教育部重点实验室(武汉理工大学)开放课题基金项目“船舶电力推进系统的建模与仿真”(基金号HSSE0802)的资助。

【Abstract】 Marine electrical propulsion system gains many advantages over traditional diesel drive system,which is a hot research area in ship manufacturing industry. Modeling and simulation research of marine electrical propulsion system,which can describe static and dynamic running processes,is helpful to discover inherent principles and to direct the design and management of the system.The dissertation develops from the following aspects:the design and analysis of experiment device,mathematic modeling of marine electrical propulsion system, contrast between simulation results and experiment results,simulation for malfunction and typical working conditions,calculation of the drive motor’s energy saving,motor control optimization strategy.The dissertation accomplishes three items of research:1) The marine electrical propulsion system of Wuhan University of Technology is designed and its components,features and working principles are analyzed.A whole set of mathematic models for the lab’s equipments are set up,which include drive engine,regulator,generator,voltage regulator,transformer,converter,filter and propeller.The whole set of models can be used for system analysis.In order to simulate propeller load realistically,the Chebyshev polynomial fitting method is utilized to express the Nordstrom propeller atlas across four quadrants,which can be adjusted according to various propeller types.The ratio between load torque and real ship’s propeller load is derived from analyzing the machine motion equation,so that the experiment equipments can have the same dynamic characters as the real ship. Those mathematic models of the equipments are described by Mast language,and the whole set of simulation models of system are designed in Saber.The veracity and validity of the system simulation models are verified by contrasting the models’ experimental data with lab’s equipment experiment data.2) The typical running conditions,harmonic and malfunctions are simulated to discover some characters and laws of marine electrical propulsion system.Such typical running conditions as start,braking and emergency reversing are simulated to study the response time,current,voltage and torque.The performances of stopping and braking are contrasted between diesel propulsion and electrical propulsion with the same tons and power.The features under low speed condition are also studied. The harmonic effect on marine electrical network is analyzed,what is more,the input alternating current filter is designed which is proved to be useful by simulation experiment.Such malfunctions as rectifier malfunction,earth malfunction,bus short-circuit and inverter malfunction are simulated.Some basic rules are found through simulation tests and some guide advices are given.3) The running efficiency of drive motor is studied by analyzing the definition of motor and the energy-saving potential is found.In order to find out the best efficiency point,the minimum loss control strategy is studied at an angle of energy transform. The iron-loss asynchronous motor model is built to calculate the best efficiency point and corresponding flux.The minimum loss control strategy is proved to be effective by simulation experiment and the adaptability range of efficiency optimization method is also discussed.Aiming at problem of the bad dynamic response character with the best efficiency control,a new drive motor control strategy is put forward to take both efficiency and dynamic response into consideration.The new modified vectrol control strategy is validated to be useful by contrasting simulation experiments with traditional vector control method.It offers a feasible solution to improve the efficiency of marine electrical propulsion system with good dynamic response character.The dissertation is supported by the following projects:State "211" Project-"WUT Marine Electrical Propulsion Simulation Lab";doctor foundation projects of the State Ministry of Education of PRC(No.20040497012);the Research Fund of HSSE,WHUT,the State Ministry of Education(No.HSSE0802).

节点文献中: 

本文链接的文献网络图示:

本文的引文网络