节点文献

卫星编队飞行相对姿态动力学与控制

Relative Attitude Dynamics and Control in Satellite Formation Flying

【作者】 张治国

【导师】 李俊峰;

【作者基本信息】 清华大学 , 力学, 2009, 博士

【摘要】 本文主要对编队飞行中涉及到相对姿态的动力学与控制问题作了探索和研究,旨在为卫星编队飞行的设计和应用提供有益的理论基础。本文首先在编队构形的研究基础上,给出了伴随卫星绕飞(伴飞)轨道设计的一些参考准则。这些参考准则仅适用于主星近圆轨道、不考虑摄动影响等因素的理想编队,没有涉及主星大偏心率椭圆轨道和非理想情况。对于伴随卫星跟踪观测目标卫星,如果任务中没有其它条件的限制,伴随卫星的期望姿态是不确定的。因此需要增加一些约束条件来完成期望姿态的规划设计。本文采取了根据轨道信息确定期望姿态和根据相对位置信息确定期望姿态两种方式,并分别增加了角速度约束和四元数约束。还在太阳帆板法线方向尽量对准太阳的限制下,研究姿态控制问题。这可以扩展到编队中一颗卫星同时和两颗卫星通讯的应用。采用基于四元数反馈的控制律,可以实现编队中相对姿态的长时间、大角度的姿态跟踪机动。对该控制律,利用Lyapunov稳定性定理证明了闭环系统的渐近稳定性。对于编队飞行相对姿态一致保持的情况,四元数反馈控制律依然可用。如果目标卫星、追踪卫星的姿态角、姿态角速度相差足够小时,可以近似的认为姿态相对运动学方程为互相解耦的关系式。可在此前提下进行控制律设计,例如利用线性二次型的设计方法。追踪卫星观测失效的目标卫星特定面,追踪卫星必须同时进行相对轨道和相对姿态的跟踪控制。本文给出了编队飞行中相对位置和相对姿态的动力学方程,研究了一种可能的相对位置和相对姿态的跟踪控制方法。控制律中进一步考虑目标卫星转动惯量的不确定性,通过算法逼近了转动惯量比值的真实值。本文给出一种三角形编队队形保持的策略。通过相对轨道和姿态的联合控制,保证了卫星之间距离保持不变。由于三角形结构的特点,从而维持了三角形编队队形。但此方式不保证编队队形整体方位的不改变。最后初步讨论了平面情况下太阳帆航天器的姿态被动稳定。设计不对称的太阳帆结构,仿真验证了此结构可以用于螺线轨道的太阳帆姿态被动稳定。

【Abstract】 This thesis mainly studies on the dynamics and control issues of relative attitude in formation flying, aiming to provide some useful theoretical reference for the practical applications of satellite formation flying.This thesis firstly presents some orbit design reference criteria for the accompanying satellite in formation flying, which is based on the research of formation relative configuration. These guidelines are only applied to the ideal formation, in witch the satellites’s orbits are near circular and perturbation effects are not considered. The eccentric elliptical orbits and non-ideal situation is not involved.For the situation that accompanying satellite tracks and observers target satellite, the desired attitude of the accompanying satellite is uncertain, if there are no other tasks restrictive conditions. Therefore, more restrictive conditions are needed to plan and design desired attitude. The thesis determines the desired attitude by two ways. One is based on orbit informations and the other is based on relative orbit information. In these processes the constraint of angular velocity and the constraint of quaternion are added respectively. Forthermore, the thesis researches the attitude dynamics and control when the task requires that the solar panel face to the sun as much as possible. Similar research methods can be used in the formation application, which requires a satellite comunicate two satellite at the same time. Cotrol law based on quaternion is adopted to achieve long duration, large angle attitude tracking maneuver. Lyapunov stability theory was used to prove the asymptotic stability of the closed-loop control system.For the situation of relative attitude maintaining consistency in formation flying, the quaternion feedback control law is still available. If the differences of attitude angle and the angular velocity between the chase satellite and the target satellite are small enough, it can be thought approximately that the relative attitude kinematic equations are decoupling. The control law can be designed under the premise mentioned above, such as the use of linear-quadratic design method.To observe a specific surface of the target satellite, the chaser satellite must perform the attitude and orbit tracking control at the same time. The thesis developed relative orbit and relative attitude dynamics equations, and an effective control law. Further, considering the uncertainty of inertia, an adaptive control method is developed to obtain the correct inertial ratio.The thesis presents a strategy for triangular formation configuration. Relative orbit and attitude joint control ensures that the distance between the satellites would remain unchanged. Because of the characteristic of triangular structure, a triangular formation configuration is maintained. But this approach does not guarantee that the formation does not change the overall direction.Finally, the thesis holds a preliminary discussion on attitude passive stability of the solar sail spacecraft in the plane situation. The asymmetric structure of the solar sail is designed. Simulation proves that the structure can make the solar sail attitude to be passive stable on the spiral trajectories.

  • 【网络出版投稿人】 清华大学
  • 【网络出版年期】2009年 09期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络