节点文献

锇、钌、铱杂环化合物及相关有机物的电化学研究

Electrochemical Study of Osmacycles, Ruthenacycles, Iridacycles and Related Organic Compounds

【作者】 吴丽琼

【导师】 夏海平; 杨防祖;

【作者基本信息】 厦门大学 , 有机化学, 2008, 博士

【摘要】 有机电化学是有机化学和电化学相互结合的一门交叉学科,与有机化学和电化学的许多领域密切相关。近年来,有机电化学在有机电分析,有机电合成,有机光电化学,有机电催化等方面的研究都得到了快速的发展。二十一世纪,由于材料、能源、信息、环境、生命科学对有机电化学的要求,以及有机化学和电化学之间不断地相互渗透,使有机电化学具有良好的发展前景。本论文对课题组合成的一系列结构新颖的配合物(锇、钌、铱杂环化合物)和有机化合物(环戊二烯及戊二醛衍生物)进行了全面的、系统的电化学研究,主要分以下七个部分:第一章是绪论,介绍了电化学分析技术在过渡金属有机化学中的应用,并结合本论文的核心内容,着重对单核、双核、多核配合物的电分析研究进行了概述。同时,阐述了电氧化还原在有机合成中的重要意义,并介绍了前人的研究成果。此外,对有机电化学研究进行了展望。第二章主要介绍实验方法及实验装置。阐述了循环伏安、微分脉冲伏安、电位阶跃、电化学原位紫外可见光谱、恒电流计时电位、控电位电解等实验方法的原理及运用于配合物和有机化合物研究的目的。第三章主要研究锇苯和钌苯的电化学性能。有关金属苯的研究目前主要集中在其合成方法、芳环反应性等方面,在光电性能的研究仍未见前人报道。本章首次研究了锇苯[Os(CHC(PPh3)CHC(PPh3)CH)Cl2(PPh32]OH和钌苯[Ru(CHC-(PPh3)CHC(PPh3)CH)Cl2(PPh32]Cl的氧化还原行为;测定了此锇苯氧化过程的电子转移数及在研究体系中的扩散系数。同时,我们还系统研究了不同配体取代单核锇苯和钌苯的电化学反应,揭示了这些反应的共性和特性;以及反应物和产物在电极表面的吸附;并探讨了可能的电化学反应的机理。此外,我们研究了各种桥联(碳桥、三氯桥)双核和三核锇苯(或钌苯)的电化学行为,揭示了金属中心通过桥相互作用的性能及机理。第四章的主要工作是共轭桥联铱氧杂六元环双核配合物的电化学研究。有关Ir为金属中心的双核配合物的电化学研究未见前人报道。本章首次研究了此双核配合物的氧化还原性能及反应动力学参数,发现了两个Ir中心之间具有强的相互作用。进而,采用控电位电解,结合核磁、X射线单晶衍射对此铱氧杂六元环双核配合物的电氧化产物进行分离分析,探索该配合物的电化学反应机理。第五章主要阐述环戊二烯负离子衍生物的电化学氯化。本章对具有高热稳定性、结构新颖的环戊二烯负离子衍生物[CHC(PPh3)CHC(PPh3)CH]Cl进行了电化学性能研究。在循环伏安研究的基础上,我们进行了控电位电氧化反应,并对电解产物进行分离提纯,获得了一氯环戊二烯负离子的晶体结构,并进行了核磁表征。此外,我们还提出了由电引发产生氯自由基的可能的自由基取代反应机理。本章的卤化反应避免了使用对环境污染严重的卤化试剂,通过电子得失实现,是一条绿色合成路线。第六章主要研究了戊二醛衍生物的合成、抗氧化及电化学性能。本章以钌苯[Ru(CHC(PPh3)CHC(PPh3)CH)Cl2(PPh32]Cl为原料,与浓硝酸反应以高产率合成了结构新颖的戊二醛衍生物[OHCC(PPh3)CHC(PPh3)CHO]NO3。戊二醛衍生物在浓硝酸中的原位NMR研究结果发现,此二醛在浓硝酸中被酸化而不被氧化,加入NaHCO3将酸中和后会重新生成戊二醛,表明其具有奇特的抗氧化性。戊二醛衍生物在氟硼酸中具有相同的现象,因此,我们研究了戊二醛衍生物和氟硼酸反应,获得环状酸化产物[HOCHOCHC(PPh3)CHC(PPh3)](BF42,并对其结构进行了X射线单晶衍射和核磁表征。此外,戊二醛衍生物的循环伏安研究结果表明,在电位研究窗口范围(-1.8~+1.5 V)内未出现氧化峰,这进一步证实了该结构奇特的二醛具有较强的抗氧化性。同时,通过原位电化学紫外可见光谱研究了戊二醛衍生物在-1.71 V的准可逆还原过程,并证实了该电极过程伴随后续化学反应的电化学机理(EC机理)。将戊二醛衍生物控制电位在+1.0 V和+1.5 V进行电解,电解产物的核磁研究表明二醛未被氧化,仍然稳定存在。将电位控制在+2.0 V,电解产物的氢谱和磷谱信号都发生改变,经分离提纯,获得了环戊二酸酐衍生物[OC(O)C(PPh3)CHC(PPh3)C(O)]ClO4的晶体结构,并且进行核磁和红外表征。第七章概述了本论文研究工作的创新性,并对今后的工作进行了展望。

【Abstract】 Organic electrochemistry is an interdisciplinary subject based on the mutual combination of organic chemistry and electrochemistry,which is closely related to all areas of organic chemistry and electrochemistry.In recent years,impressive progress has been made in research on organic electroanalysis,organic electrosynthesis, organic photoelectrochemistry and organic electrocatalysis.Owing to the demands of materials,energy,information,surrounding and life for organic electrochemistry,as well as the interpenetration of organic chemistry and electrochemistry,organic electrochemistry will have great development prospect.In this dissertation,comprehensive and systematic electrochemistry properties of metal complexes(Osmacycles,Ruthenacycles and Iridacycles) and organic compounds(Cp- ion and dialdehyde) are investigated.The dissertation contains seven chapters as following:In Chapter 1,the applications of electroanalytical techniques in the transition-metal-containing organometallic complexes are introduced.According to the main objective of this dissertation,the research progress on electroanalysis of mononuclear,binuclear,multinuclear metal complexes is also summarized emphatically.Furthermore,the significance and the process of the electrochemical redox reaction in organic synthesis are presented.Additionally,the research prospect of organic electrochemistry is reviewed.Chapter 2 mainly introduced the experimental methods and devices.The principles of electrochemical technologies,including cyclic votammetry,differential pulse voltammetry,potential step,in-situ electrochemical UV-Vis spectra, constant-current chronopotentialmetry and potentiostatic electrolysis,are described.In Chapter 3,the electrochemical behaviors of ruthenabenzene [Ru(CHC(PPh3)CHC(PPh3)CH)Cl2(PPh32]Cl and osmabenzene[Os(CHC(PPh3)CH-C (PPh3)CH)Cl2(PPh32]OH are studied by above-mentioned electrochemical technologies for the first time.The generality and specific characteristics for electrochemical reaction of osmabenzenes and ruthenabenzenes with different substitutions are investigated,and the possible electrochemical reaction mechanisms are proposed.Additionally,redox properties of bridged binuclear and trinuclear osmabenzenes indicate the metal centers interaction through bridging ligands.In Chapter 4,electrochemical study on conjugation-bridged oxa-Iridium six-membered ring dimmer is discussed.Electron transfer process and reaction kinetics parameters are researched.The results show that there is a strong interaction between the two iridium centers.In order to study the electrochemical reaction, controlled potential electrolysis is carded out and the electrolytic products are characterized by NMR and X-ray single crystal diffraction.Chapter 5 describes the electrochemical chlorination of Cp- ion derivative.The redox property of Cp- ion derivative is studies by CV.Based on the result of CV,the anodic oxidation is carried out by controlled potential electrolysis.The electrolytic product is separated and purified.Furthermore,chloride Cp- is obtained and structurally characterized by NMR and X-ray single crystal diffraction.In addition, radical reaction mechanism which is electrically initiated is proposed.In this chapter, chloride Cp- is prepared by environmentally friendly electrochemical method,which differs from the traditional organic reaction.Chapter 6 mainly studies the synthesis,antioxidation and electrochemical property of a novel glutaraldehyde derivative.Treatment of[Ru(CHC(PPh3)CHC-(PPh3) CH)Cl2(PPh32]Cl with concentrated nitric acid produces a novel dialdehyde [OHCC(PPh3)CHC(PPh3)CHO]NO3 in high yield.The dialdehyde is stable even in the presence of nitric acid.Reaction of the dialdehyde with fluoboric acid gives [HOCHOCHC(PPh3)CHC(PPh3)](BF42,which is structurally characterized. Electrochemical study on the dialdehyde further confirms the antioxidation property of dialdehyde.Moreover,the reductive process of dialdehyde at -1.71 V is investigated by in-situ electrochemical UV-Vis spectra,which demonstrates that the electron transfer is followed by chemical reaction of the reduced intermediate,namely, an electrochemical(EC) mechanism.In addition,a cyclic anhydride[OC(O)C(PPh3)-CHC (PPh3)C(O)]ClO4 is obtained by electrolysis at high potential(+2.0 V). In Chapter 7,the innovation of the dissertation is concluded and the prospect of this research is presented.

  • 【网络出版投稿人】 厦门大学
  • 【网络出版年期】2009年 08期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络