节点文献

船舶舵/翼舵—鳍/翼鳍智能鲁棒控制研究

Ship Main/Flap Rudder-Main/Flap Fin Intelligent Robust Control

【作者】 方亮

【导师】 刘胜;

【作者基本信息】 哈尔滨工程大学 , 控制理论与控制工程, 2008, 博士

【摘要】 采用舵/翼舵、鳍/翼鳍是改善船舶操纵性能行之有效的方法,目前工程中使用的舵和翼舵(鳍和翼鳍)之间依靠导杆或齿轮传动,舵角和翼舵角(鳍角和翼鳍角)之间具有确定的转角比,因此未能有效利用翼舵(翼鳍)的效能。为了充分发挥翼舵(翼鳍)的作用,本文将舵和翼舵(鳍和翼鳍)作为两个相互独立的面进行控制设计,即对于船舶航向/横摇控制而言,系统的输入量为舵角、翼舵角、鳍角和翼鳍角,其实质为矢量控制。由于对应舵(鳍)上产生的一个扶正力矩值,有多种不同的舵角/翼舵角(鳍角/翼鳍角)组合与之对应,本文采用遗传优化的方法设计舵角/翼舵角(鳍角/翼鳍角)智能分配规则,并针对系统存在的干扰和不确定性,应用鲁棒控制理论设计系统控制律。因此,本文的研究内容为船舶航向/横摇-舵/翼舵-鳍/翼鳍智能鲁棒控制,目的在于提高航向、横摇控制精度,降低能耗,增强系统鲁棒性。首先,建立舵/翼舵、鳍/翼鳍水动力特性数学模型。根据舵/翼舵、鳍/翼鳍水动力系数图谱,通过分析图谱曲线的特点,选择合理的回归模型,对图谱进行数据采样,应用最小二乘法对回归模型的参数进行拟合,并对拟合结果进行显著性检验,以确定可用于工程计算的水动力特性数学模型。其次,建立船舶航向/横摇-舵/翼舵-鳍/翼鳍控制系统数学模型。建立了船舶横荡、艏摇、横摇三自由度运动非线性耦合模型,并给出舵/翼舵、鳍/翼鳍对船舶作用力及力矩的计算模型。研究给出了海浪、海风、海流的干扰力(及力矩)的算法。研究了系统驱动能量方程的建模,从分析舵机和翼舵机(鳍伺服系统和翼鳍伺服系统)所需克服的负载力矩入手,建立了舵/翼舵(鳍/翼鳍)驱动能量方程,为控制系统的设计奠定基础。然后,研究了舵角/翼舵角(鳍角/翼鳍角)智能优化分配规则。在建立系统驱动能量方程的基础上,本文提出了“系统驱动能量最小”原则下的舵角/翼舵角(鳍角/翼鳍角)分配规则,并采用基于不可行度法的改进遗传算法(IFD-IGA)对舵角/翼舵角(鳍角/翼鳍角)进行智能优化。接着,设计了船舶航向鲁棒控制系统、船舶横摇鲁棒控制系统和船舶航向/横摇鲁棒控制系统。在分析系统模型不确定性和干扰随机性的基础上,采用基于线性矩阵不等式(LMI)的状态反馈H~2/H~∞鲁棒控制方法和μ鲁棒控制方法对船舶航向控制、横摇控制、航向/横摇控制进行了设计研究。最后,对所设计的船舶航向控制系统、横摇控制系统、航向/横摇控制系统进行仿真,在多种海情、不同浪向、标称模型和摄动模型下进行仿真。仿真结果表明,与传统的自动舵系统和减摇鳍系统相比,本文设计的舵/翼舵-鳍/翼鳍智能鲁棒控制系统具有更高的控制精度、显著的节能效果和良好的鲁棒性能。尤其在高海情下,舵/翼舵、鳍/翼鳍能够提供更大的扶正力矩,显著提高了系统对航向和横摇的控制能力。

【Abstract】 Main/flap rudder and main/flap fin are the effective way to improve ship’s maneuverability.Nowadays,the main and flap rudders(main and flap fins) are connected by leaders or gears in engineering.It has certain angle ratio,and the effect of flap rudder(flap fin) is restricted.To exert the function of flap rudder (flap fin) fully,the thought that main and flap rudders(main and flap fins) are divided into two independent control systems is put forward in this paper.For the ship yaw/roll control,the system inputs are the main rudder angle,flap rudder angle,main fin angle,flap fin angle,so it also can be called vector control. Because there are many different main/flap rudder angles(main/flap fin angles) for a yaw(roll) lifting moment,the genetic algorithm is adopted to design the intelligent optimizing assignment rule of main/flap rudder angles(main/flap fin angles).There are disturbance and uncertainty existing in the system,and the robust control theory is adopted to design the system control rules.So the study content of this paper is ship yaw/roll-main/flap rudder-main/flap fin vector intelligent robust control,and the purpose is to enhance the course and roll control effect,low the energy consumption,and improve the system’s robust performance.Firstly,the hydrodynamic performance model of main/flap rudders and main/flap fins were founded.This paper founded the calculating models of main/flap rudder and main/flap fin by their hydrodynamic coefficient chats.The reasonably regress models were chosen,and then the data sampling of chats was done.The coefficients of regress models were acquired by means of the least square algorithm.And the remarkable test was carried out to make sure that the regress models can be used in engineering calculating.Secondly,the system mathematic model of main/flap rudder and main/flap fin joint control for ship course/roll was founded.The ship’s 3-DOF nonlinear coupling dynamic models of yawing,rolling and swaying were founded.The models of force and moment of main/flap rudder and main/flap fin were given. The disturbance force and moment of sea wave,wind and current were studied. The model of system driven energy was studied primarily,the driven energy equation of main/flap rudder(main/flap fin) was modeling by analyzing the moment that rudder servo system and flap rudder servo system(fin servo system and flap fin servo system) overcame,and it established the base for the design of control system.Then,the intelligent optimizing assignment rule of main/flap rudder angles (main/flap fin angles) was studied.For a restoring moment in the main/flap rudder (main/flap fin),there are many kinds of main/flap rudder angles(main/flap fin angles).So this paper studied the assignment rules of main/flap rudder angles (main/flap fin angles).And the improved genetic algorithm based on the infeasible degree(IFD-GA) was adopted to optimize the main/flap rudder angles(main/flap fin angles).And then,the ship course robust control system,the ship roll robust control system,and the ship course/roll synthesis coordinated robust control system were designed.The uncertainty of system models was analyzed.The theory of state feedback H~2/H~∞robust control based on linear matrix inequality(LMI),and the theory ofμrobust control were adopted to design those systems.At last,the system simulations were given with different sea conditions and encounter angles,nominal model and perturbation model.The simulation results showed that,compared with common rudder and fin in traditional control style, the systems designed in this paper had higher control precision,much less energy consumption,and better robust performance.Especially in high sea situation,the main/flap rudder and main/flap fin can provide bigger lifting moment,it improved the system’s control ability for course and roll remarkably.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络