节点文献

喷水推进船舶的航向/航速控制研究

Study on Course/Speed Control of Ship with Waterjet Propulsion

【作者】 高双

【导师】 朱齐丹;

【作者基本信息】 哈尔滨工程大学 , 控制理论与控制工程, 2008, 博士

【摘要】 随着喷水推进技术和喷水推进器制造技术的发展,采用喷水推进器作为船舶动力的船只越来越多,所包含的船型也越来越广,在军事领域以及民用领域得到了成功的应用。因此关于喷水推进船舶的控制技术也逐渐吸引了该领域研究人员的高度重视。本文以喷水推进船舶为研究对象,开展了航向和航速综合控制技术的研究工作。首先,论文针对喷水推进器矢量推力模型及船舶运动模型进行了研究,在分析推力影响因素、采用能量守恒和动量定理建立推进器推力与船舶航速和水泵转速的关系、分析推进器喷口角度和倒车斗作用的影响基础上,建立推力矢量模型;在分析船舶水动力、喷口转动特性及水泵转速调节特性的基础上,建立了船舶运动模型。其次,利用推力矢量模型和船舶运动模型,分析了喷口角度变化和水泵转速变化对船舶纵向推力损失和转向力矩损失的影响,得到不同推力、不同喷口转角与船舶的转向速度、横倾角度和航速变化的关系,通过限制转向过程中的横倾角度,给出船舶安全机动时的喷口转动角度。再次,开展了航向、航速分离控制方法的研究,将系统分解为航向、航速独立控制回路,将相互耦合关系作为各回路的扰动,并利用摄动理论简化了系统模型,考虑喷角转动特性和水泵转速调节特性使航速和航向控制系统具有不匹配不确定特性,利用反步设计方法对处理不匹配系统具有的优越性,设计了滑模变结构控制和反步设计相结合的控制方法,实现了航向的控制。在航速控制中,将反步法与动态逆相结合,解决了反步设计过程中虚拟控制量导数求解困难的问题,有效实现了航速的控制;开展了航向、航速综合控制方法的研究,将航向和航速模型组成双输入双输出耦合系统,针对有界干扰和未知参数的影响,设计了反步控制器,实现了航向航速的解耦控制;并针对航向、航速综合控制方法,采用滑模控制解决了系统的建模不确定性和干扰问题,并减少了参数调节量,降低了参数确定难度,运用积分滤波器替代控制规律中的虚拟控制量导数求取,减少了设计计算量,应用神经网络实现对喷水推进器的纵向推力和转向力矩的动态逆求解,不仅提高了控制模型准确性,而且减少了喷水推进器对系统造成的不确定性的影响。最后,对论文的工作和取得成果进行了总结,并对进一步需要开展的研究工作进行了探讨。

【Abstract】 With the development of the waterjet propulsion technology and the manufacturing techniques, there are more and more vessels including lots of types using waterjet as engine. Those vessels are used in the military field as well as a wide range of civilian areas applications. So the ship’s waterjet propulsion control technology is gradually attracting the attention of the researchers in the field. Used the ship with waterjet propulsion as research object, This paper researches the ship course and speed control technology.Firstly, it studies the waterjet thrust-vector model and ship movment model. After analyzing the thrust factors, get the relation between the thrust and the ship speed vector and power rotate speed on the base of the law of conservation of energy and momentum theorem. Then analyse the effect of the waterjet nozzle angle and deflector to thrust. It gives the waterjet thrust-vector model. After analyzing the characteristic research of vessel dynamical and powe, it gives ship movment model.Secondly, used the waterjet thrust-vector model and ship movment model, analyse the surge force and turning moment lost caused by the change of the nozzle angle and power rotate speed. Get the relationship among the changes of ship motive radius, roll angle, speed and the differences of thrust and waterjet nozzle angle. Then it gives the nozzle angle though restricting the roll angle when ship turns safety.Thirdly, it research the dividable control of course and speed. the system is divided into speed control loop and speed control loop. And deal with the mutual coupling relationship between those systems as system interference, including the characters of nozzle turning and power rotate accommodating. Because they are mismatched uncertain systems, and the backstepping design method that has advantages in uncertain system, so it gives the controller combining the backstepping design method and sliding mode theory that realized the course control. And in speed control, combined the backstepping design method and dynamic inversion, it gives the controller to solve the difficulty of the calculative of the differential coefficient and realize the speed control. Then it research the compositive control of course and speed. Because the speed controller has no coordination with the course controller, so consider the two controllers together, and sum up them to the unified control model. Then discuss the unknown parameters and the limited interference separately, and design the controllers for them. Then design the compositive controller considering two factors together to realize the ship control. Aim at the compositive method of course and speed, and in order to resolve the difficulties to determine design parameters, and the complex differential coefficient of the virtual control value. Adopt sliding mode controller to solve the modeling uncertainties and interference. It decreases the number of the parameters and reduces the difficulties of confirming them. At the same time using integral filter in the dynamic control to reduce the calculative workload of the differential coefficient. At last using neural network to get the waterjet dynamic inversion of the surge force and turning moment, which reduces the system uncertainty of waterjet and advances the model veracity.Finally, it sumes up the work of the thesis and the innovations, and it discusses the next work.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络