节点文献

纳米级步进压电微动台结构设计与性能分析研究

Study on Structure Design and Characteristic Analysis of a Nano-Stepping Piezoelectric Actuator

【作者】 权哲浩

【导师】 林玉池;

【作者基本信息】 天津大学 , 测试计量技术及仪器, 2007, 博士

【摘要】 作为纳米技术中的关键环节,步进压电精密驱动技术是现代精密驱动技术中的热门研究领域之一,并且正在朝着高精度、高分辨率的方向加以提高,一些新方法、新原理和新技术不断涌现出来。本文对外驱动和内驱动两种驱动方式的步进压电微动台的工作原理、运动方式及动力学模型进行了详细地分析和研究。设计了外驱动型和内驱动型纳米级步进压电微动台的结构,外驱动型微动台以采用新颖的“推-拉”原理为基础,通过合理安排驱动器的位置,将压电陶瓷的驱动力直接加载在微动平台,从而保证系统的刚度,获得较大驱动力和行程。提出了一种新型STM样品移送系统的扫描隧道显微镜机械结构并设计了该系统的内驱动型微动台结构。建立了压电微动台的动力学结构模型,并对其夹紧机构和驱动机构的受力情况进行了理论分析。采用有限元分析软件ANSYS,进行了压电微动台的静、模态特性分析,得出了步进压电微动台位移、应力分布、驱动能力、固有频率和振型。对外驱动型微动台的结构进行仿真计算,分析了结构参数对步进压电微动台特性的影响,得到了压电微动台的固有频率和振型。通过正交试验法,得到了影响固有频率和振动幅值的最优条件,其中微动台导轨宽度的影响较大,最优的设计参数为:载物台高10mm,壁厚5mm,导轨宽55mm,从底座到连接块的高4.4mm。通过逐步回归分析方法,建立外驱动型步进压电微动台的4个因素和第一阶固有频率之间的的最优回归方程,该定量分析对纳米级步进压电微动台的设计和控制具有重要价值。完成了压电微动台驱动控制系统的设计,研制了抗干扰、控制方便的压电陶瓷驱动电源。通过对外驱动型微动台的各个参数进行了详细的试验测量,验证了动力学模型和有限元分析结果,满足纳米级的微位移、较大驱动力和行程的要求。该微动台的重复性实验结果较好,获得了匀速连续稳定的运动。该微动台具有大行程纳米测量机等好的实际应用前景。建立了STM微动台实验控制电路,对内驱动型微动台通过实验,验证了有限元分析结果,可以满足纳米级的微位移系统的要求,具有较大驱动力和行程。该微动台的载物力约为16.7N,步进频率50Hz时速度达到26.4μm/s,分辨率为驱动电压10V时约为8.84nm,在14mm的整个行程范围内具有较好的大行程稳定性。该微动台被运用在STM系统,实现了对原子实空间图像的观察。分析了附加因素对该驱动器的影响,针对这些因素的影响提出了相应的解决办法和措施。

【Abstract】 As the key step of nano-technology, stepping piezoelectric precise driving technology is one of the hot research fields of modern precise driving technology, and is improved towards high-precision and high-resolution with the emergence of some new methods, new principles and new technologies.In this paper, a detailed analysis and study for the stepper piezoelectric micro-moving stage with both external and inner driving is done through their working principles、movements and kinetic models. Both the External-micro-moving stage and inner-micro-moving stage nano-stepper piezoelectric micro-moving stages’structure is designed, the External-micro-moving stage nano-stepper piezoelectric micro-moving stage is based on the new "push-pull" principle, the driving force of piezoelectric ceramics is loading on the stage’s platform directly through the reasonable arrangements of the actuator’s position, thus ensuring the system’s stiffness and gaining larger driving force and range. A new STM samples transferred system is proposed, and the structure of its inner-micro-moving stage is designed. Dynamical structural model of the piezoelectric micro-moving stage is built, and the intensifying and driving institutions’stress is analyzed theoretically. Finite element analysis software ANSY is used to analyze the static and modal characteristics of the piezoelectric micro-moving stage and get its displacement、stress distribution、driving ability、natural frequencies and mode shapes. The structure of External-micro-moving stage micro-stages is stimulated, and the influence of structural parameters on it is analyzed, thus, its natural frequencies and mode shapes are got. Through the orthogonal experiment method, the optimal conditions impacting the natural frequency and the amplitude is gained, among which the width of the guide rail’s impact is greater. The optimal design parameters are: the object stage’s 10mm height , 5mm thickness, width 55mm, the height from the base to the connecting block 4.4mm. Through the stepwise regression analysis, external-micro-moving stage nano-stepper piezoelectric micro-moving stages’4 factors and the multiple regression equation of the natural frequency are established, and the quantitative analysis is of great value for the design and control of nano-stepper piezoelectric micro-moving stage. The design of the driving control system of piezoelectric micro-moving stage is finished, the PZT power for anti-interference and convenient control is designed. Through the detailed test and measurement of all the parameters of the external-micro-moving stage nano-stepper piezoelectric micro-moving stage, the dynamic model and finite element analysis results are verified, meeting the requirements of nanometer micro-displacement、larger driving force and range. The micro-moving stage’s reproducibility experimental results are better, and obtaining uniform steady movement. The micro-moving stage is of good practical application in long-range nanometer measurement machine. STM micro-moving stage experimental control circuits are built, the finite element analysis results are verified through experiments of the internal-micro-moving stage micro-moving stage, meeting the requirements of nano-micro-displacement system, with larger drives and range. The loading force of the micro-moving stage is about 16.7N, stepping frequency is 50Hz, the velocity is 26.4μm/s, and the resolution is bout 8.84nm when the driving voltage is 10V, and it has good long-range stability within the 14mm entire range. The micro-moving stage is used in the STM system, realizing the observation of real-space images of atomic. Additional factors’impact on the micro-moving stage is analyzed, and the relevant solutions and measures are put forward towards the impact.

  • 【网络出版投稿人】 天津大学
  • 【网络出版年期】2009年 04期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络