节点文献

某集束防空火箭炮位置伺服系统的鲁棒控制与应用研究

【作者】 柴华伟

【导师】 马大为;

【作者基本信息】 南京理工大学 , 兵器发射理论与技术, 2008, 博士

【摘要】 随着现代战争模式的变化及军事科学技术的发展,对火箭炮提出了更高的要求,需要提高火箭武器系统射击准确度。为了适应防空火箭炮的发展要求,本文结合某集束防空火箭炮伺服系统的研制,研究高性能的火箭炮交流位置伺服系统,有效地提高了火箭炮的射击精度,满足了火箭炮交流位置伺服系统在模型参数摄动和强外干扰等情况下的调炮精度和跟踪精度要求,具有重要的理论价值和现实意义。详细分析了永磁同步电动机的数学模型,建立了集束防空火箭炮交流伺服系统被控对象的数学模型,研究了交流伺服系统的主要控制策略。对系统的控制器设计进行了深入的分析,并且对系统进行了常规PID控制策略的仿真,结果表明系统在参数匹配良好的条件下可以取得良好的性能,一旦系统的参数发生变化或受到外界干扰的影响,都会导致系统性能变差。因此,研究新型控制策略是非常必要的。针对集束防空火箭炮位置伺服系统具有参数和负载变化大、冲击扰动力矩大的特点,经典PID控制不能满足其位置控制的高精度要求,提出了一种二自由度PID控制方法;所设计的二自由度PID控制器,仅有两个可调参数,系统的动态性能与控制器参数直接相关,可以分别调整位置跟随性能和抗干扰性能。理论分析、仿真及实验结果表明,该控制器可以使系统同时具有良好的位置跟随性能、抗干扰性能,系统具有较强的鲁棒性;而且设计方法简单,参数调整方便,控制器容易实现,能够满足高性能交流伺服系统的要求。H_∞鲁棒控制方法是近年来非常有效地应用于系统鲁棒稳定、参数摄动及干扰抑制的自动控制理论,现已成功应用于许多场合。考虑到集束防空火箭炮位置伺服系统的特点,针对受控对象本身会出现参数摄动及存在外部干扰的现象,为了实现交流位置伺服系统的高精度位置控制,提出了一种鲁棒控制策略,以抑制各种不确定因素对受控对象的影响,增强系统的鲁棒性;同时结合最优控制理论,引入了最优控制器,其目的是满足系统的跟随特性。仿真结果表明,这种控制策略既可以满足伺服系统的跟随特性,又可以有效地抑制干扰。采用这种方法后,系统的精度较高、鲁棒性强,具有实际应用前景。将模糊控制和滑模变结构相结合,提出了一种模糊滑模控制器,其中滑模控制用来克服系统模型不精确和扰动的影响,而模糊控制用来实时估计系统不确定量的边界值以削弱抖动,充分发挥二者的优点。将此控制器分别应用于速度环和位置环,仿真结果表明,模糊滑模控制能够有效地削弱传统滑模控制的“抖动”现象,而且在一定条件下具有较强的鲁棒性。研究滑模变结构控制与神经网络的结合,以使系统在保持对模型参数摄动和外部干扰强鲁棒性的同时,尽量减弱抖振现象。仿真结果表明,该控制策略不但有效地降低了系统的静态误差,同时使系统对模型参数摄动及外部干扰具有较强的鲁棒性,可以满足系统的性能指标要求,且此方法具有结构简单和易于实现等优点。最后对系统进行了样机实验研究,针对位置伺服系统进行了经典PID控制和内模控制实验,通过实验研究不仅有效证实了系统设计指标的实现,同时证实了系统设计方案的正确性以及控制算法的有效性,为系统的进一步研制提供了指导。

【Abstract】 With the change of modern war pattern and development of military scientific technology, higher requests of antiaircraft rocket launcher are put forward, i.e. necessities of higher shooting precision.To cater for development of antiaircraft rocket launcher, integrating with research of servo system of some cluster antiaircraft rocket launcher, high performance ac position servo system of antiaircraft rocket launcher is studied. It can effectively improve shooting precision of antiaircraft rocket launcher, fulfilling the positioning and tracking accuracy when servo system is under parametric variation of the model and strong disturbance, and have important theoretical value and realistic meanings.Mathematical model of PMSM is elaborately analyzed, then mathematical model of ac servo system of antiaircraft rocket launcher is set up and major control methods of servo system are discussed. Controller design of the system is deeply investigated and simulation of conventional PID controller of the system is done. Simulation results indicate that the system can achieve fairly good performances under good parametric matching, but when systematic parameters vary or the system encounters external disturbance, systematic performance will be bad. Therefore, it is necessary to develop novel control methods.Aimed at systematic characteristics such as greatly varying parameters and load, and strong impact moment, classical PID control can’t satisfy high precision positioning control. Hence, a kind of two-degree-of-freedom PID control method is put forward. This controller has only two adjustable parameters and dynamic performances of the system are directly related to parameters of the controller, and position following performance and anti-disturbance performance may be adjusted respectively. Theoretical analysis, simulation and experiment results indicate this controller can make the system have good position following performance and anti-disturbance performance. The system has fairly strong robustness. Besides, design method is simple, parameters’ adjusting is convenient, the controller is easily realized, and can satisfy requests of high performance ac servo system.H_∞robust control method has been effectively applied to automatic control theory of robust stability, variation of parameters and disturbance restraining in recent years. In view of characteristics of ac servo system for antiaircraft rocket launcher, aimed at variation of parameters and outer disturbance, in order to achieve high precision position control, a kind of robust control method is put forward to restrain influences of various uncertainties acting on controlled object, thus enhance robustness of the system. Besides, combined with optimal control theory, optimal controller is introduced to satisfy following characteristic of the system. Simulation results indicate this method can both satisfy following characteristic of servo system and effectively restrain disturbance. After adopting this method, the system has high precision, strong robustness and practical application foreground.Integrating fuzzy control with sliding mode VSC, a fuzzy sliding mode controller is put forward. Here, sliding mode controller is used to conquer effects of disturbance and uncertainties of the model. On the other hand, fuzzy controller is used to evaluate boundary value of uncertainties of the system real time to decrease chattering, thus exert excellences of two controllers. Apply this controller to speed loop and position loop, and simulation results indicate that fuzzy sliding controller can effectively weaken chattering phenomenon of traditional sliding mode control and has strong robustness.In order to weaken chattering while the system keeps strong robustness to variation of model parameters and outer disturbance, integration of sliding mode control and neural network is studied. Simulation results indicate that this controller can not only effectively decrease static error, but also have strong robustness to variation of model parameters and external disturbance. It can satisfy performance requests of the system, and have excellences of simple structure and easy realization.At last, prototype experimental research of the system is carried out. Classical PID control and IMC experiments of position servo system are done. According to experimental research, realization of systematic design index is validated. At the same time, correctness of design scheme and effectiveness of control algorithms are validated, providing guidance for further research of the system.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络