节点文献

基于压电摩擦阻尼器的结构振动控制理论与试验研究

Theoretical and Experimental Investigations of Structure Control Based on Piezoelectric Friction Damper

【作者】 赵大海

【导师】 李宏男;

【作者基本信息】 大连理工大学 , 防灾减灾工程与防护工程, 2008, 博士

【摘要】 普通摩擦阻尼器是工程结构中常用的一种消能减振装置,具有良好的耗能能力。但是,作为一种被动控制装置,它不能够根据结构的用途、荷载情况和结构的响应实时地改变自身的特性,因而限制了其应用范围。压电陶瓷驱动器具有电致变形的能力,尽管位移行程较小,但是其变形被约束后,在电场作用下能够提供很大的驱动力,因此在智能摩擦阻尼器的研究中充当了相当重要的角色。本文结合压电陶瓷驱动器和摩擦阻尼器的特点设计了一种新型的压电摩擦阻尼器,提出了调节阻尼器控制力的半主动控制策略,并对安装压电摩擦阻尼器的结构控制系统进行了理论分析和试验研究,主要工作包括以下几个方面:(1)提出了一种新型的压电摩擦阻尼器,利用MTS试验机对阻尼器的性能进行了测试。在不同加载频率和幅值的正弦位移激励下,分别测试了仅施加预压力和同时施加预压力和电压下阻尼器的动力性能。结果表明,随着预压力的增加,压电陶瓷驱动器的出力增大,当预压力增加至一定数值时,增加预压力对驱动器出力的影响减小。当仅施加预压力时,阻尼器的性能稳定,滞回性能基本不随加载频率的变化而改变,同时对其施加预压力和随时间变化的电压时,阻尼器具有稳定的出力性能。(2)针对压电摩擦阻尼器的结构控制系统,提出了调节阻尼器控制力的模糊次优Bang-Bang控制策略和速度输入型T-S模糊控制策略。数值分析结果表明,提出的两种控制策略均能有效减小结构的反应。模糊次优Bang-Bang控制策略消除了应用Bang-Bang算法时容易引起结构加速度反应放大的问题,但是实施控制时需要测量结构的全部状态信息,提高了控制成本;而速度输入型T-S模糊控制策略只需测量阻尼器所在层的速度响应,减少了传感器的数量,降低了控制成本。(3)对以压电摩擦阻尼器作为消能减振装置的非线性结构振动控制问题进行了研究。建立了连续Bouc-Wen模型表示的非线性结构控制系统运动方程,在确定压电摩擦阻尼器初始控制力的基础上,应用提出的速度输入型T-S模糊控制策略对非线性结构的振动控制问题进行了分析。结果表明,以连续Bouc-Wen模型描述结构的非线性易于和运动方程相结合,避免了采用折线型关系的恢复力模型对塑性拐点的判断,被动控制时阻尼器的控制力不能根据结构的响应实时改变而可能放大结构的加速度响应,而模糊半主动控制方法使阻尼器能够根据结构的反应施加合适的控制力,有效减小结构响应。(4)研究了多维地震动下偏心结构以压电摩擦阻尼器作为消能装置的振动控制问题。为了同时减小偏心结构的平动反应和扭转反应,在结构水平双向设置压电摩擦阻尼器,对偏心结构在多维地震动下的振动控制问题进行了数值分析。结果表明,多维地震动作用下水平双向设置摩擦阻尼器可以同时减小偏心结构的平动反应和扭转反应,提出的速度输入型T-S模糊策略调节压电摩擦阻尼器控制力的方法能够获得更好的效果。(5)进行了安装压电摩擦阻尼器的钢框架模型结构的振动台试验,检验了提出的压电摩擦阻尼器和控制策略的效果。利用MATLAB/SIMULINK软件平台和dSPACE实时仿真工具建立了基于压电摩擦阻尼器的两层钢框架模型结构的仿真模型,并采用RCP技术对该模型结构进行了地震模拟振动台试验研究,比较分析了不同地震波输入下压电摩擦阻尼器的控制效果。振动台试验结果表明,提出的压电摩擦阻尼器和控制策略非常有效,无论是被动控制还是半主动控制均能减小结构的响应,而半主动控制系统能充分发挥压电摩擦阻尼器的性能,获得更好的控制效果。

【Abstract】 Normal friction damper is a type of energy dissipation device in civil engineering, and has the good ability of energy dissipation. However, as a passive device, it could not change its performance according to structure purpose, load condition and structure response. Piezoelectric actuator has the ability of negative effect. Although its stroke is small, the actuator could generate large force by limiting its deformation. So, it plays an important role in developing smart friction damper. Combined piezoelectric actuator and friction damper, a novel piezoelectric friction is designed and fabricated. Control strategies are also proposed to adjust the control force of damper. In this dissertation, a systematic study on theory and experiment of structural control system with piezoelectric friction damper was performed, and the primary innovative contents include:(1) A new type of piezoelectric friction damper is proposed, and the mechanical performance of the damper is tested on MTS electro-fluid servo-universal machine. The hysteresis behaviors of the damper under various normal forces and voltages are tested when exposed to displacement excitations of different frequencies and amplitudes. Experimental results indicate that the force generation of the piezoelectric actuator increases as preload grows. The force generation is nearly independent of the preload when the preload is greater than certain value. The load-displacement loops of the damper are stable and independent of the excitation frequency when the damper is only exposed to clamping force. The force generation of the piezoelectric friction damper is stable when applied to the linearly increasing voltage signal.(2) The control strategies based on piezoelectric friction damper are further investigated, and the fuzzy sub-optimal bang-bang control and velocity input Takagi-Sugeno (T-S) fuzzy control are proposed. Numerical simulations indicate that the proposed two kinds of methods of semi-active control strategies can suppress the seismic responses. Fuzzy sub-optimal bang-bang control eliminates the amplified accelerations when applying bang-bang control method. However, the implementation of the method increases cost due to all structural state. The implementation of velocity input T-S fuzzy control needs only velocity response, so the control cost decrease and has a high application value.(3) The vibration control approach of the nonlinear structure using piezoelectric friction damper subjected to seismic excitations is investigated. The equation of motion for nonlinear building structure with continuous Bouc-Wen hysteretic model is presented. The initial control force of the damper is determined by time history analysis under minor earthquakes. The seismic reduction of the nonlinear structure installed with piezoelectric friction damper is implemented. Simulation results indicate that the continuous Bouc-Wen model can be conveniently coupled with the equations that describe the motion of the building structure. This model avoids locating transition points that exit in bi-linear models. The acceleration responses of the nonlinear structure may be amplified due to fixed friction force. The proposed fuzzy semi-active control method can generate control force according to structure response, and is very efficient in reducing structure responses.(4) The vibration control approach to the asymmetric-plan building using semi-active friction dampers subjected to multi-dimensional seismic inputs is investigated. In order to reduce the translational and rotational responses of structure, the piezoelectric friction dampers are located on x and y directions, respectively. The proposed strategy is used here to control irregular structure responses under seismic excitations. Numerical results indicate that the friction dampers that are located on x and y directions are effective in reducing both translational and rotational responses of irregular building, and semi-active control method can acquire better effect.(5) A series of shake table tests are conducted on a two-storey steel structure model controlled with a piezoelectric friction damper. The performance of the designed piezoelectric friction damper and the control strategy are evaluated experimentally. The simulation model including damper and structure has been built based on MTALAB/SIMULIMK software environment and hardware/software resources of dSPACE. Shaking table tests of the structure with piezoelectric friction damper is implemented by rapid control prototyping (RCP) technology. The seismic reductions are compared under different earthquake waves. Experimental results indicate that the designed piezoelectric friction damper is effective in mitigating both passive control and semi-active control, and the semi-active control strategy can achieve better performance as compared to passive state.

节点文献中: 

本文链接的文献网络图示:

本文的引文网络