节点文献

新型希夫碱金属配合物的合成、表征及荧光特性研究

Studies on the Synthesis, Characterization and Fluorescence Property of the Novel Schiff Base Complexes

【作者】 艾小康

【导师】 毕彩丰; 范玉华;

【作者基本信息】 中国海洋大学 , 海洋化学工程与技术, 2007, 博士

【摘要】 金属配位聚合物作为一种新型的分子材料,以其独特的结构可剪裁性、丰富的拓扑结构和在离子交换、非线性光学、分子识别等领域的巨大潜在应用而受到广泛的关注,同时由于希夫碱配合物在分析化学、生物、发光材料和金属腐蚀等领域具有广泛的应用,成为当前配位化学研究热点之一。合成新的希夫碱配体及配位聚合物,研究其性质及应用,对配位化学的发展有重要意义。本文合成了未见报道的4个系列29种新型配合物和一个希夫碱化合物的单晶。配合物中有6种高分子量的四元或二元配位聚合物,10种低聚配位聚合物,1种醋酸根桥联配位低聚物及8种稀土配合物及其它4种双核或多核配合物。这些配合物是以过渡金属(II)或稀土元素Ln(III)为中心离子,以2-羟基-1-萘醛缩4,4ˊ-二氨基二苯甲烷(H2DDMNA)、2-羟基-1-萘醛缩4,4ˊ-二氨基二苯醚(H2DDENA)、2-羟基-1-萘醛缩2,7-二氨基萘(H2DNNA)和2, 4-二羟基苯甲醛缩4,4ˊ-二氨基二苯醚(H4DDEDB)为配体合成的。采用元素分析、光谱分析、X-ray晶体衍射、摩尔电导率、热分析、凝胶渗透色谱(GPC),基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)等方法对合成的配体及配合物进行了表征,推断出配合物可能的结构,对配体和具有荧光的配合物进行了荧光光谱分析。同时对部分配合物与DNA的相互作用进行了研究。配合物的组成如下。2-羟基-1-萘醛缩4,4ˊ-二氨基二苯甲烷希夫碱(H2DDMNA)高分子量的过渡金属离子配位聚合物共6种,其中5种配位数为6的四元六配位聚合物,其组成分别为:[M(DDMNA)(L1)(H2O)]n(M=Zn,Cu,Co,Ni,Mn),[Cd(DDMNA)]n。2-羟基-1-萘醛缩4,4ˊ-二氨基二苯醚希夫碱(H2DDENA)过渡及稀土金属离子配合物共10种,其中有6种属于低聚物的过渡金属配位聚合物,4种稀土配合物。其组成分别为:[M(DDENA)]n(M=Zn,Cu,Co,Ni,Mn,Cd),Ln(DDENA)(NO3)(Ln=Sm,La,Gd,Dy)。2-羟基-1-萘醛缩2,7-二氨基萘希夫碱(H2DNNA)过渡及稀土金属离子配合物共8种,其中有4种属于低聚物的过渡金属配位聚合物,4种稀土配合物。其组成分别为:[M (DNNA)](nM=Zn,Cu,Co,Ni),Ln (HDNNA)(NO3)2(H2O()Ln=Sm,La,Gd,Dy)。\2,4-二羟基苯甲醛缩4,4ˊ-二氨基二苯醚希夫碱(H4DDEDB)过渡金属离子配合物共5种,其组成分别为:Cd2(DDEDB)L2(H2O)5、Cu3(DDEDB)L2(L3)2(H2O)2、Co5(DDEDB)(L3)6(H2O)2、Ni4(DDEDB)(L3)4(H2O)4和Zn2(DDEDB)(H2O)2,它们为双核或多核配合物,其中Co5(DDEDB)(L3)6(H2O)2属于低聚物的四元醋酸根桥联配位聚合物。合成的配合物均有颜色粉末状物质,在空气中能稳定存在;配体C=N上的N原子、苯环酚羟基的氧原子、硝酸根氧原子、醋酸根氧原子,四氢呋喃的氧原子都是可配位的原子;硝酸根在内界以双齿形式参与配位,醋酸根以桥联双核参与配位,水分子通常参与配位或以结晶形式存在;同配体的稀土配合物的配位数高于过渡金属配合物;稀土元素由于价电子层构型的相似性,使同一配体与不同的稀土金属离子生成的配合物具有相似的组成、结构及物理化学性质;Zn(II), Mn(II), Cu(II), Ni(II), Co(II)可形成六配位的配位聚合物,Cd(II)可以形成配位数为五的双核配合物。利用Achar的微分法和Coats-Redfern的积分法计算程序,分别对30种热分解动力学方程进行了拟合,对部分配合物进行了非等温热分解动力学处理,得出了配合物的热分解反应机理、热分解动力学方程、相应的动力学参数及活化熵ΔS≠和活化吉布斯函数ΔG≠,结果如下:配位聚合物[Zn(DDMNA)(L1)(H2O)]n的第2步热分解过程的反应机理为:二级化学反应动力学函数为:f(α)=(1-α)2,热分解动力学方程为: dα/dt = A·e-E/RT·f(α) = A·e-E/RT(1-α)2,E = 348.61kJ/mol,lnA =52.10,r = 0.9981,△S≠=180.96J/mol·K,△G≠=219.04 kJ/mol。配位聚合物[Cd(DDMNA)]n的第1步热分解过程的反应机理为:三维扩散热,动力学函数符合Zhuralev、Lesokin和Templman方程: f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1,其热分解动力学方程为:dα/dt = A·e-E/RT·f(α) = A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1,E = 536.71kJ/mol,lnA =87.60,r = 0.9988,△S≠=476.66J/mol·K,△G≠=217.35 kJ/mol。配位聚合物[Zn(DDENA)]n的热分解过程的反应机理为:三维扩散,动力学函数符合Zhuralev、Lesokin和Templman方程: f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1,其热分解动力学方程为:dα/dt= A·e-E/RT·f(α)=A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1,E = 539.84kJ/mol,lnA =81.20,r = 0.9612,△S≠=422.56J/mol·K,△G≠=238.55 kJ/mol。桥联配位聚合物Co5(DDEDB)(L3)6(H2O)2的第2步热分解动力学函数为:f(α)=1/4(1-α)[-ln(1-α)]-3,热分解的动力学方程为:dα/dt = A·e-E/RT·f(α) = A·e-E/RT f(α) =1/4(1-α)[-ln(1-α)]-3,E= 312.54kJ/mol,lnA =43.65,r =0.9784,△S≠=110.05J/mol·K,△G≠= 227.25kJ/mol。配合物Cd2(DDEDB)L2(H2O)5的第2步热分解过程的反应机理为:三维扩散,其反应动力学符合Zhuralev, lesokin和Templman方程函数:f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1 ,热分解动力学方程为: dα/dt=A·e-E/RT·f(α)= A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1 , E=175.07kJ/mol , lnA=30.83 , r=0.9984 ,△S≠=6.53J/mol·K,△G≠=171.57 kJ/mol。配位聚合物[Zn (DNNA)]n热分解过程的反应机理为:二级化学反应:其动力学函数符合方程:f(α)=(1-α)2,热分解动力学方程为:dα/dt = A·e-E/RT·f(α) = A·e-E/RT(1-α)2,E = 1789.21kJ/mol,lnA =260.92,r = 0.9768,△S≠=1916.15J/mol·K,△G≠=252.46 kJ/mol。培养得到了希夫碱2-[[(2-氨基苯基)亚胺]苯甲基]-4-氯苯酚(C19H15ClN2O)的晶体,通过x-射线单晶衍射测定了其结构。该晶体属三斜晶系,空间点群P-1 ,晶胞参数为a =8.5630(17)?,α= 68.96(3)?,b = 9.4940(19)? ,β= 84.84(3)?,c = 11.069(2)?,γ= 77.75(3)?,V = 820.7(3)?3,Z = 2,F(000) = 336,Dc = 1.306 g/cm3 ,μ= 0.24 mm-1。最终偏差因子[对I>2σ(I)的衍射点] R1 = 0.0442, wR2 = 0.1186和R1 = 0.0721,wR2 = 0.1339 (对所有衍射点):w = 1/[σ2 (Fo2)+(0.0738P)2+0.1224P],P =(Fo2+2Fc2)/3。运用Gaussian03量子化学程序包,采用密度泛函理论(DFT) B3LYP方法,采用6-31G+标准基组,计算采用的原子坐标来自晶体结构数据,对化合物进行几何全优化,并在优化构型基础上探讨了NBO电荷分布和转移、自然键轨道和分子轨道成份及能级等,通过对电荷布居分析、分子轨道成份、分子轨道相互作用稳定化能的研究,进一步说明了氢键的形成,用分子轨道理论(HOMO、LUMO轨道)揭示了化合物的微观结构化学活性部位,这可为同类异双希夫碱配体及其配合物的合成,催化和生物活性等方面的研究和应用提供参考。对配体H2DDMNA、H2DDENA和H2DNNA及具有荧光的希夫碱配位聚合物的荧光特性进行了研究。配体H2DDMNA和H2DDENA及希夫碱配位聚合物[Zn(DDMNA)(L1)(H2O)]n、[Cd(DDMNA)]n、[Zn(DDENA)]n和[Cd(DDENA)]n的荧光光谱的激发峰和发射峰λex/λem分别为:491nm /510 nm;494nm /515 nm; 281nm /505 nm、348nm/505 nm、430nm/505 nm;290nm /515 nm、349nm/515 nm、430nm/515 nm、456nm/515nm、484nm/515nm;290nm /505 nm、360nm/505 nm;290nm /410 nm。配体H2DNNA及希夫碱配位聚合物[Zn(DNNA)]n、双核希夫碱配合物Zn2(DDEDB)(H2O)2,和Cd2(DDEDB)L2(H2O)5,的荧光光谱的激发峰和发射峰λex/λem分别为:290nm /505 nm、352nm /505 nm和491nm /505 nm; 280nm /500 nm、332nm/500 nm、435nm/500 nm;275nm /385 nm,并且在292nm/385 nm和338nm/385 nm存在两个肩峰;300nm/375nm和325nm/375nm。配合物[Zn(DDMNA)(L1)(H2O)]n , [Cd(DDMNA)]n , [Zn(DDENA)]n ,Cd2(DDEDB)L2(H2O)5,[Zn (DNNA)]n具有良好的荧光特性。与配体相比,相应的配合物激发峰个数和发射峰位置发生了变化,荧光强度也增强。采用吸收光谱分析法、荧光光谱法对配合物Cd2(DDEDB)L2(H2O)5、Dy(HDNNA)(NO3)2(H2O)与DNA的相互作用分别进行了研究。配合物Cd2(DDEDB )L2(H2O)5的吸收光谱随着DNA的加入发生增色效应,且吸收峰发生红移,而配合物的荧光越来越弱,发生荧光猝灭作用。DNA对配合物Cd2(DDEDB)L2(H2O)5的荧光猝灭属于静态猝灭,其静态猝灭结合常数KLB为2.2x104 L·mol-1。DNA与配合物Cd2(DDEDB)L2(H2O)5结合反应结合位点数n为1.32,结合常数KA为2.63X105 L·mol-1。配合物Dy(HDNNA)(NO3)2(H2O)与DNA相互作用后的吸收峰随着DNA浓度的增大吸收光谱发生微小的增色效应。随着而配合物Dy(HDNNA)(NO3)2(H2O)浓度的不断增加,使EB-DNA的荧光强度越来越弱,发生荧光猝灭作用。配合物Dy(HDNNA)(NO3)2(H2O)对EB-DNA体系荧光猝灭并非单纯的动态或静态猝灭,而是两种猝灭方式共同作用的结果。配合物Dy(HDNNA)(NO3)2(H2O)与DNA的作用方式为非嵌插的静电作用和嵌插作用两种方式。

【Abstract】 Metal coordination polymers, a new kind of molecule materials, have attracted much more attentions for their flexible tailoring、various topologies and promising application in ion-exchange, non-liner optics, molecular recognition. Schiff base and its complexes are widely used in the fields of analytical chemistry, biology, metal corroded and luminescent material. The study of them is focus of the study of coordination chemistry. So, prepare new Schiff base coordination polymer and study their properties and application are of important significance to the development of coordination chemistry.Four Schiff base ligands which are derived from 4,4ˊ-diaminodiphenylmethane- 2-hydroxy-1-naphthaldehyde (H2DDMNA), 4,4ˊ-diaminodiphenylether-2-hydroxy- 1-naphthaldehyde (H2DDENA), 2,7-diamino naphthalene -2-hydroxy- 1-naphthaldehyde (H2DNNA), 4,4ˊ-diaminodiphenylether-2,4-dihydroxybenzaldehyde(H4DDEDB) have been prepared, and twenty nine coordination compounds of transition metal or lanthanide nitrates with these ligands and crystal of Schiff base 2-[[(2-aminophenyl)imino] phenyl- methyl]- 4-chlorophenol have been synthesized. In these complexes, there are six coord- ination polymer, ten low coordination polymer, one low coordination polymer of the ac- etate as a bridge, eight rare earth complexes and four dinuclear or multinuclear compl- exes. All these complexes are first reported by author. These ligands and complexes were characterized by elemental analysis, IR spectra, UV spectra , TG-DTG,X-ray crystal diffraction , molar conductance analysis, gel permeation chromatography(GPC) and assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometer. Fluorescence of schiff base ligands and their complexes of Cd2+, Zn2+ have been studied. The interaction between partial complexes and DNA has been studied, too.The transition metal complexes with Schiff base ligands from 4, 4ˊ-diaminodiiphen- ylmethane-2-hydroxy-1-naphthaldehyde (H2DDMNA) are coordination polymers. The compositions of these complexes are confirmed to be [M(DDMNA)(L1)(H2O)]n(M=Zn,Cu,Co,Ni,Mn,they are hexa-coordinated and quaternary coordination polymer ),[Cd(DDMNA)]n. The compositions of the metal complexes with Schiff base ligands from 4,4ˊ-di- aminodiphenylether-2-hydroxy-1-naphthaldehyde(H2DDENA) are confirmed to be [M(DDENA)]n(M=Zn,Cu,Co,Ni,Mn,Cd),Ln(DDENA)(NO3)(Ln=Sm,La,Gd,Dy ). The transition metal complexes of this ligand are low coordination polymers.The compositions of the metal complexes with Schiff base ligands from 2,7-diamino naphthalene-2-hydroxy-1-naphthaldehyde (H2DNNA) are confirmed to be [M (DNNA)]n M=Zn,Cu,Co,Ni),Ln (HDNNA)(NO3)2(H2O)(Ln=Sm,La,Gd,Dy). The transition metal complexes of this ligand are low coordination polymers.The compositions of the metal complexes with Schiff base ligands from 2,7-diamino naphthalene-2-hydroxy-1-naphthaldehyde(H2DNNA) are confirmed to be Cd2(DDEDB)L2(H2O)5、Cu3(DDEDB)L2(L3)2(H2O)2、Co5(DDEDB)(L3)6(H2O)2、Ni4(DDEDB)(L3)4(H2O)4 and Zn2(DDEDB)(H2O)2. The Co5(DDEDB)(L3)6(H2O)2 is low coordination polymers. The others are dinuclear or polynuclear complexes.The synthesis of ligands and complexes was in non-aqueous solvents. All of the complexes were stable and could be preserved in the air for a long time. The complexes were colored and powered substances. The properties of the Ln(Ⅲ) complex with theIn the complexes, the nitrogen atom of schiff base, oxygen atom of hydroxybenzene, and the oxygen atom in tetrahydrofuran are all coordinated to the metal ions. Water molecules are coordinated to the acceptor or exists as crystal water.The nitrate ions are within the coordination sphere, these are coordinated to the metal ions in the form of bidentate. The acetate tends to coordinate with the center ion as a bridge. Zn(II), Cu(II), Mn(II), Co(II), Ni(II) and Cd(II) atoms may be respectively hexa- or penta- coordinated.Combinating Achar differential and Coats-Redfern integral method which fits the thirty kinetic equations, the calculating program was designed. The kinetic equations of thermal decomposition for complexes and the corresponding kinetic parameters were gained. The kinetic parameters include E、A, order of reaction and correlation coefficient, etc. The activation entropy△S≠and activation free-energy△G≠for some thermal decomposition stage were also calculated.The thermal decomposition kinetic function of [Zn(DDMNA)(L1)(H2O)]n in step 2 may be expressed as f(α)=(1-α)2, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT(1-α)2, E = 348.61kJ/mol, lnA =52.10, r = 0.9981,△S≠=180.96J/mol·K,△G≠=219.04 kJ/mol. The thermal decomposition kinetic function of[Cd(DDMNA)]n in step 1 may be expressed as f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1, and the kinetic equation of thermal decom-position may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1, E = 536.71kJ/mol, lnA =87.60, r = 0.9988,△S≠=476.66J/mol·K,△G≠=217.35 kJ/mol.The thermal decomposition kinetic function of [Zn(DDENA)]n may be expressed as f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1,E = 539.84kJ/mol,lnA =81.20, r = 0.9612,△S≠=422.56J/mol·K,△G≠=238.55 kJ/mol. The thermal decomposition kinetic function of Co5(DDEDB) (L3)6(H2O)2 in step 2 may be expressed as f(α)=1/4(1-α)[-ln(1-α)]-3, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·1/4(1-α)[-ln(1-α)]-3, E=312.54kJ/mol, lnA=43.65, r=0.9784,△S≠=110.05J/mol·K,△G≠= 227.25kJ/mol.The thermal decomposition kinetic function of Cd2(DDEDB )L2(H2O)5 in step 2 may be expressed as f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1, and the kinetic equation of thermal decomposition may be expressed as dα/dt=A·e-E/RT·f(α) =A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1, E = 175.07kJ/mol, lnA =30.83, r = 0.9984,△S≠=6.53J/mol·K,△G≠=171.57 kJ/mol. The thermal decomposition kinetic function of [Zn(DNNA)]n may be expressed as f(α)=(1-α)2, and the kinetic equation of thermal decomposition may be expressed as dα/dt =A·e-E/RT·f(α)=A·e-E/RT(1-α)2, E=1789.21kJ/mol, lnA=260.92, r=0.9768,△S≠=1916.15 J/mol·K,△G≠=252.46 kJ/mol.The crystal of Schiff base 2-[[(2-aminophenyl)imino] phenylmethyl]-4-chlorophenol (C19H15ClN2O) was obtained and its crystal structure was determined by the single crystal X-ray diffraction. The compound crystallizes in the triclinic, space group P-1 with a =8.5630(17)?,α= 68.96(3)?, b = 9.4940(19)?,β= 84.84(3)?, c = 11.069(2)?,γ= 77.75(3)?, V = 820.7(3)?3, Z = 2, F(000) = 336, Dc = 1.306 g/cm3,μ= 0.24 mm-1, R1 = 0.0442, wR2 = 0.1186 (I>2sigma(I)), R1 = 0.0721, wR2 = 0.1339 (all data),w = 1/[σ2 (Fo2)+(0.0738P)2+0.1224P] and P=(Fo2+2Fc2)/3. The molecular structure of 2-[[(2-aminophenyl)imino]phenylmethyl]-4-chlorophenol is calculated using the density functional theory(DFT) with the gradient corrected B3LYP method. The standard 6-31G+ basis sets are applied for C、H、O、N and Cl atoms. Atom coordinates used in the calculation are from crystallographic data. The crystal structure of the compound is totally optimized. All data obtained from the calculations are consistent with those gained from the determination. All calculations are performed using the Gaussian03 program package. The formation of hydrogen bonding,, the relationship between fine micromechanism of the compound and its chemistry activities position are also expatiated according to the theory of molecular orbital (HOMO and LUMO) in this dissertation. It may direct to synthesize asymmetry schiff base ligand and complex etc.The excitation and emission peak wavelengths (λex/λem) of H2DDMNA, H2DDENA and H2DNNA are 491nm /510 nm; 494nm /515 nm and 290nm /505 nm, 352nm /505nm respectively in fluorescence spectra.The excitation and emission peak wavelengths(λex/λem) of the schiff base coordination polymer of [Zn(DDMNA)(L1)(H2O)]n, [Cd(DDMNA)]n, [Zn(DDENA)]n, [Cd(DDENA)]n and [Zn(DNNA)]n are 281nm /505 nm, 348nm/505 nm, 430nm/505 nm; 290nm /515 nm, 349nm/515 nm, 430nm/515 nm, 456nm/515nm, 484nm/515 nm; 290nm /505 nm, 360nm/505nm; 290nm /410nm and 280nm/500 nm, 332nm/500 nm, 435nm/500 nm respectively in fluorescence spectra.The excitation and emission peak wavelengths(λex/λem) of Zn2(DDEDB )(H2O)2 and Cd2(DDEDB)L2(H2O)5 are 275nm/385nm and 300nm/375nm, 325nm/375nm respectively in fluorescence spectra.. The complexes of [Zn(DDMNA)(L1)(H2O)]n, [Cd(DDMNA)]n, [Zn(DDENA)]n, [Cd(DDENA)]n , Cd2(DDEDB)L2(H2O)5 , [Zn (DNNA)]n and Zn2(DDEDB )(H2O)2 have good fluorescence. Compared with the ligands, the excitation peaks and the emission peakof their complexes have changed, and the fluorescence intensity increases.The interaction of the Cd2(DDEDB)L2(H2O)5 and Dy(HDNNA)(NO3)2(H2O) complexes with DNA was studied by UVspectra and fluorescence spectra respectively. Experimental results show that on the incremental addition of DNA,the UV absorption bands of the complex of Cd2(DDEDB)L2(H2O)5 enhance gradually and red-shifted while the fluorescence intensity of the complex weakens. The type of quenching of Cd2(DDEDB)L2(H2O)5 and DNA is a static quenching process. The static quenching constant is KLB=2.2x104 L·mol-1. The binding site number n and the intrinsic binding constant were measured respectively, they were n=1.32, KA=2.63X105 L·mol-1.Experimental results show that on the incremental addition of DNA,the UV absorption bands of the complexe of Dy(HDNNA)(NO3)2(H2O) tiny enhance gradually. The fluorescence intensity of the EB-DNA complex weakens with increasing concentration of Dy(HDNNA)(NO3)2(H2O). It was confirmed that the combinations of DNA with Dy(HDNNA)(NO3)2(H2O) were not a single static or dynamic quenching process .they are joint action of the static and dynamic quenching process. It was confirmed that electrostatical and intercalation binding were the both modes of interaction between Dy(HDNNA)(NO3)2(H2O) complex and DNA..

节点文献中: 

本文链接的文献网络图示:

本文的引文网络