节点文献

黄原酸基有机抑制剂的设计合成及其与锌铁硫化矿相互作用机理研究

The Synthesis of Xanthate Orgnic Depressant and Its Depressing Mechanisms in Zinc-iron Sulfide Minerals

【作者】 熊道陵

【导师】 胡岳华;

【作者基本信息】 中南大学 , 矿物加工工程, 2006, 博士

【摘要】 本文的研究内容主要包括以下五个方面:铁闪锌矿、毒砂和磁黄铁矿的晶体结构和表面性质研究,黄原酸基有机抑制剂的设计和合成,黄原酸基有机抑制剂对锌铁硫化矿的抑制效果及其对锌铁硫化矿电化学浮选的影响,运用动电位、红外光谱和紫外吸收光谱等测试方法探讨了黄原酸基有机抑制剂与锌铁硫化矿的作用机理,通过浮选药剂特性指数i和亲水亲油平衡值HLB等方法了研究黄原酸基有机抑制剂的结构与性能关系。1.纯矿物铁闪锌矿、毒砂、磁黄铁矿的X—射线衍射数据与JCPDS卡片Marmatite-Cubic、Arsenopyrite-Triclinic和Pyrrhotite-Trigonal的标准衍射数据基本一致,基本上可以认定铁闪锌矿(广西大厂)是Marmatite-Cubic晶型的矿物,毒砂(湖南瑶岗仙)是Arsenopyrite-Triclinic晶型的矿物,磁黄铁矿(广西大厂)是Pyrrhotite-Trigonal晶型的矿物。捕收剂丁基黄药、丁胺黑药、乙硫氮(SN-9)对纯矿物铁闪锌矿、毒砂、磁黄铁矿的捕收能力是丁基黄药>丁胺黑药>乙硫氮,经铜离子活化后,铁闪锌矿在pH=2~12内都可浮,毒砂和磁黄铁矿也得到活化。2.根据有机抑制剂的分子设计理论,合成了多羟基黄原酸盐有机抑制剂化合物三种,多羧基黄原酸盐有机抑制剂化合物四种,反应产物的红外光谱分析及化学元素分析确定了反应产物及其纯度。多羟基黄原酸盐有机抑制剂对锌铁硫化矿有抑制作用,抑制强弱顺序是毒砂>磁黄铁矿>铁闪锌矿。铜离子活化后,多羟基黄原酸盐对铁闪锌矿抑制作用不明显,对毒砂和磁黄铁矿抑制作用显著,在pH>6,铁闪锌矿与毒砂和磁黄铁矿可以得到较好的浮选分离。多羧基黄原酸盐有机抑制剂抑制锌铁硫化矿时,强弱顺序是毒砂>磁黄铁矿>铁闪锌矿。铜离子活化后,多羧基黄原酸盐对铁闪锌矿失去抑制作用,对毒砂和磁黄铁矿抑制作用明显,铜离子活化后,多羧基黄原酸盐存在下,在pH>6铁闪锌矿与毒砂和磁黄铁矿可以得到较好的浮选分离。选用(1-甲酸钠-1-乙酸钠)丙酸钠二硫代碳酸钠作有机抑制剂,实现了锌砷、锌硫和锌砷硫分离等3种人工混合矿的浮选分离。3.丁黄药为捕收剂,铁闪锌矿、毒砂和磁黄铁矿的浮选行为与矿浆电位有关,低pH值下,可浮电位区间较大,高pH值下,可浮电位区间较小。不管是否加入铜离子,在黄原酸基有机抑制剂作用下,铁闪锌矿在一定的电位区域内才可浮选,低pH值下,可浮的电位区间较大,高pH值下,可浮性较差;磁黄铁矿和毒砂在pH>4.5的电位区域内不浮。低pH值下,在铁闪锌矿可浮的电位区间,铁闪锌矿与磁黄铁矿和毒砂可以实现分离;高pH值下,在铁闪锌矿可浮的电位区间它们难以实现分离。4.黄原酸基有机抑制剂在锌铁硫化矿物表面吸附量大小顺序为毒砂>磁黄铁矿>铁闪锌矿,这正是黄原酸基有机抑制剂对锌铁硫化矿抑制作用顺序。随着pH增大,黄原酸基有机抑制剂在锌铁硫化矿物表面吸附量增大,在pH>6.0时,吸附趋于饱和,吸附量基本保持不变。黄原酸基有机抑制剂在毒砂和磁黄铁矿表面的吸附量均高于在铁闪锌矿表面的吸附量,进一步表明黄原酸基有机抑制剂对于毒砂和磁黄铁矿的抑制能力高于对铁闪锌矿的抑制能力,尤其对毒砂效果更加显著。黄原酸基有机抑制剂能显著改变锌铁硫化矿物表面的ζ—电位,顺序是多羧基黄原酸盐系列(TX)>多羟基黄原酸盐系列(GX)。阴离子型的黄原酸基有机抑制剂在带负电的锌铁硫化矿表面吸附,并能使其负电位更大,说明黄原酸基有机抑制剂在锌铁硫化矿表面的吸附为化学吸附。黄原酸基有机抑制剂与锌铁硫化矿作用前后的红外光谱说明:这二类药剂与锌铁硫化矿的作用以化学作用为主,同时黄原酸基有机抑制剂与矿物也发生了氢键作用,从而增强了药剂对矿物的抑制作用。铜离子活化后,黄原酸基有机抑制剂和丁黄药存在下,铁闪锌矿表面的CH2+与丁黄药作用生成稳定的Cu(BX)2,而使黄原酸基有机抑制剂在铁闪锌矿表面失去抑制作用,而黄原酸基有机抑制剂在毒砂和磁黄铁矿表面表现良好的抑制性能。5.有机抑制剂的亲水基团越多,抑制能力越强。多羟基黄原酸盐(GX)有带-OH的亲水基团,抑制能力是GX3>GX2>GX1;多羧基黄原酸盐(TX)有带-COOH的亲水基团,抑制能力是TX4>TX3>TX2>TX1。基团电负性数据表明,羟基和羧基易与电负性较小的金属离子As3+发生作用,而与Fe3+、Zn2+作用则呈依次变弱的趋势,故它们对毒砂的抑制作用能力最强,磁黄铁矿次之,铁闪锌矿最弱。黄原酸基有机抑制剂随着浮选药剂特性指数i和亲水亲油平衡值HLB的增加,其亲水能力增强,抑制效果增大。其亲水能力强弱顺序是:多羟基黄原酸盐GX3>GX2>GX1;多羧基黄原酸盐TX4>TX3>TX2>TX1,亲水能力顺序也是其抑制能力顺序。

【Abstract】 The contents of studies in this paper include following five aspects:the crystal structure and surface property of marmatite、arsenopyrite andpyrrhotite, the design and synthesization of the xanthogenate organicdepressants, the depressing capability of the synthesized organicdepressants on zinc-iron sulphids minerals and effect on electrochemicalflotation of these minerals, the depressing mechanism of the organicdepressants based on zeta potential、Infrared spectrum and ultravioletspectrophotometer tests, the structure-activity relationship of the organicdepressants in the light of the flotation reagents characteristic indexnumber i and hydrophilic lipophilic balance (HLB).1. X-radial diffract datas of three minerals show that X-radialdiffract datas of the samples are as same as standard diffract datas ofJCPDS of Marmatite-Cubic, Arsenopyrite-Triclinic and Pyrrhotite-Trigonal. It is affirmed that marmatite (Guangxi province Dachang ) isof Marmatite-Cubic, arsenopyrite (Hunan province Yaoguangxian) is ofArsenopyrite-Triclinic, Pyrrhotite(Guangxi province Dachang)is ofPyrrhotite-Trigonal. Marmatite, arsenopyrite and pyrrhotite is floatableusing collector butyl xanthate, butyl amine aerofloat, anddiethyldithiocarbamate. Marmatite has good floatability from pH2 topH12 after it is activated by Cu2+ions, besides arsenopyrite and pyrrhotitecan also be activated.2. Seven polyhydroxy xanthogenate organic depressant compoundsare synthesized according to molecular design theory of organicdepressant, namely sodium 2-hydroxyethyl carbonyl dithiocarbonate,sodium 2,3-dihydroxypropyl dithiocarbonate, sodium 2, 3, 4, 5,6-quinthydroxyhexyl carbonyl dithiocarbonic, sodium acetate carbonyldithiocarbonate、sodium propionate carbonyl dithiocarbonate, 1-sodiumformate-2-hydroxy carbonyl dithiocarbonate, 1-sodium formate-1-sodium acetate carbonyl dithiocarbonat. Reaction products and theirpurity are ascertained through infrared spectral analysis and chemicalelement analysis.Floatation test shows that polyhydroxy xanthogenate has despression effect on zinc iron sulphid minerals, the order of despression capacity isarsenopyrite>pyrrhotite>marmatite. In the presence of Cu2+ions,polyhydroxy xanthogenate has weak despression effect on marmatite,nevertheless, it has stronger despression effect on pyrrhotite andarsenopyrite. Marmatite、arsenopyrite and pyrrhotite can be separatedthrough flotation in the range of pH over than 6.Flotation separation of three artificial mixed minerals aboutzinc-arsenic、zinc-sulfur and zinc-arsenic-sulfur separation can be cometrue when 1-sodium formate-1-sodium acetate carbonyl dithiocarbonicacid sodium is used as depressant. This shows that synthesizedxanthogen orgnic depressant is in favorable possession of applicationforeground and investigation value on flotation separation of zinc ironsulphid ores.3. The flotation behaviors of marmatite, arsenopyrite and pyrrhotiteare related to the pulp potential with the butyl-xanthogenate as collector.The potential area that the minerals can be floated is bigger in the low pHthan in the high pH. When the xanthogenate-group depressant is used,marmatite has a wide floated Eh area while the arsenopyrite andpyrrhotite only have a narrow floated Eh area in the low pH, so themarmatite can be separated from the arsenopyrite and pyrrhotite in thelow pH by potential control. But three of them can’t almost be floated inthe high pH and they can’t be separated.4. The order about the adsorption of the xanthogenate-groupdepressant on the surfaces of sulfides is arsenopyrite>pyrrhotite>marmatite corresponding to the depression intensity of the depressant onmineral. The adsorption density of the xanthogenate-group depressantincreases with the pH and arrives the biggest level when the pH≥6.0.The adsorption of on the surface of arsenopyrite and pyrrhotite is morethan on the surface of marmatite.The depression of the organic depressants are also indicated by thechange of the zeta-potential of the minerals which are interacted with thefloat reagents. The change of the zeta-potential is more by themulti-carboxylic xanthogenate than by the multi-hydroxy xanthogenate.With the increase of the concentration of the organic depressant, the zeta-potential of the minerals decreases continually and arrives ainvariable level when the reagents are used with a larger quantity. Thezeta-potential of the arsenopyrite is the lowest, the pyrrhotite takes thesecond place, and the one of marmatite is on the top, this result indicatesthat the order of adsorption intensity of the depressant is arsenopyrite>pyrrhotite>marmatite. Because the anion organic depressant can beintensive adsorption on the negative surfaces of the minerals, theinteraction between the reagents can be probably a kind of chemicaladsorption.The infrared spectra of the interaction between the xanthogenate-group depressant and the zinc iron sulphid minerals show that these twokinds of depressants are chemically interacted with the minerals. TheCu2+ on the surface of the marmatite reacted with the butyl xanthate andmakes Cu(BX)2 in the presence of Cu2+, butyl xanthate andxanthogenate-group depressant, so the xanthogenate-group depressantloses the depression to the marmatite while still keeps the gooddepression to the arsenopyrite and the pyrrhotite.5. The more the hydrophilic group in the organic compounds, thestronger the depression to the minerals. Polyhydroxy xanthogenateorganic depressant(GX) has the order of hydrophilic groupGX3>GX2>GX1,So that the depression capability is GX3>GX2>GX1,Similarly, for the polycarboxyl xanthogenate organic depressant, thenumber of hydrophilic-COOH and hence the depression capability isTX4>TX3>TX2>TX1.The depression capability of the xanthogenate organic depressantincreases with the characteristic index i and the value of hydrophiliclipophilic balance (HLB), the bigger the index and the HLB value, thestronger the hydrophilic performance, and the more the depressioncapability. Their order is also GX3>GX2>GX1 to the polyhydroxyxanthogenate organic depressant and TX4>TX3>TX2>TX1 to thepolycarboxyl xanthogenate organic depressant.

  • 【网络出版投稿人】 中南大学
  • 【网络出版年期】2007年 06期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络