节点文献

大跨柔性点支式幕墙及采光顶等效风荷载和风致响应研究

A Study on Equivalent Static Wind Load and Wind-induced Response of Large Span Flexible Point Supported Glass Curtain Wall and Skylight

【作者】 江勇

【导师】 王肇民; 王之宏;

【作者基本信息】 同济大学 , 结构工程, 2006, 博士

【摘要】 大跨柔性点支式幕墙及采光顶支承体系的抗风设计是玻璃建筑结构设计中一个颇受关注的热点问题。然而由于我国点支式玻璃幕墙及采光顶使用的时间还比较短,开展的研究也不够全面,因此我国用于指导点支式玻璃幕墙设计的规范还需要进一步完善。如:玻璃幕墙工程技术规范(JGJ102-2003)和点支式玻璃幕墙技术规程(CECS 127:2001)在幕墙支承体系抗风设计方面所采用的方法和准则就有所区别;而建筑结构荷载规范(GBS0009)有一定的适用范围,其中有关风荷载的内容主要是针对高层建筑及高耸结构,在指导采光顶、屋盖等大跨空间钢结构工程的抗风设计方面,存在一定程度的局限性。故此,本文在总结前人频域分析理论成果的基础上,提出了更适用于计算大跨空间钢结构风致响应的时域方法和求解相应等效静力风荷载的新体系,通过工程实例的分析得到一些有益结论,具有重要的理论价值和实践指导意义。 传统的风振研究的方法是基于频域分析的线性方法,即:线性的结构和荷载假说基础上的模态分析方法,如模态叠加法。这样,荷载和结构的非线性特征就无法考虑。这种计算导致的偏差往往不好评价,因为结构极限状态设计方法通常是假设结构不出现这些非线性特征为前提的。时域分析方法为考虑结构非线性性能进行风振分析提供了方便,它主要包括以下两个部分的内容:一是风荷载时程的处理,二是结构的非线性动力分析。 关于风荷载时程的处理,本文提供了两种方法。第一种方法是采用Davenport风速谱,通过FFT(快速傅立叶变换技术)和Monte-Carlo随机变量模拟技术获得系列离散随机准静态荷载来表达具有空间相关性的风荷载时程。第二种方法利用气动刚性风洞试验的原始数据,将试验测点上的风速时程转化为考虑群体结构影响的风力时程。相对于第一种方法,第二种方法不再采用准定常假设,更符合采光顶及屋盖等大跨空间钢结构的实际情况。同时,由于工程项目的建筑设计完成以后,其基本建筑形式就确定下来,但其结构形式仍然会存在多种方案,这就需要对每个设计方案的动力性能和风致响应进行评价,而通过气动弹性试验来测定每个方案是不现实的;但如采用本文刚性测压试验原

【Abstract】 The wind resistance design for large span flexible point supported glass curtain wall and skylight under wind load is a noticeable problem in the structural design area. However, in Chinese Codes and Standards, there are no clear concept and criterion about the supported system of glass curtain wall and skylight; even there are some inconsistent statutes. Therefore, they can’t be sufficiently applied to the engineering. Based on the theoretical achievements in frequency domain, the author proposed a new method to analyze the wind buffeting in time domain and new system to calculate equivalent static wind load of the large spatial flexible steel structure, and solve several actual projects to draw some good conclusions.The design of wind sensitive structures has most often been based on frequency domain calculations of the buffeting response. The main objection of the classical buffeting frequency theory has been the many inherent linearizations, as a simple mode superposition method demands linear structural behavior as well as a linear loading hypothesis. Thus, well known wind-loading non-linearties are lost, and the effects of deteriorating structural stiffness or increased damping at high wind velocities cannot be included. Time domain dynamic calculations give a convenient approach, which mainly include two aspects: the simulation of the wind load and non-linear finite element method.The author puts forward two methods of wind simulation. The first method concerns the simulation of the wind field from Davenport cross-spectra and coherence functions by use fast Fourier transforms and Monte Carlo simulation method; another coherent time series is got by aerorigid modeling wind tunnel testing, which turns the data of the measure points to be the wind load time series. Compare to the first method, the second one is more suitable for large span spatial steel structure. Moreover, after the architecture design of a project has been finished, the style and shape would be confirmed, but the structural style would have more than one kind. So the evaluation of each structural style is necessary; however, it is

  • 【网络出版投稿人】 同济大学
  • 【网络出版年期】2007年 06期
节点文献中: 

本文链接的文献网络图示:

本文的引文网络